UNIVERSITY OF LEEDS

Co-funded by the Erasmus+ Programme of the European Union

The value of land and economic valuation methods

ILHAM-EC

Dr Nicola Favretto n.favretto @leeds.ac.uk

Acknowledgements: Prof Jouni Paavola, University of Leeds

Learning goal and outline

- **LEARNING GOAL**
- To understand the welfare-economic basis of monetary valuation of the environment and the main approaches to monetary valuation

OUTLINE

- What is the "value of land"?
 - Theoretical framing:
 - Defining ecosystem services and different types of value
 - What is the **Total Economic Value (TEV) framework**?
 - Valuation methods: how do we measure the TEV?

What is the "value of land"?

- Grounded in the concept of Ecosystem Services (ES)
 - Benefits that humans obtain from nature through interaction of **natural, social, physical** and **human** capital

ES categories:

Provisioning: fresh water, food, fuel
Supporting: nutrient cycling, soil formation
Regulating: regulation of climate/flood, water purification
Cultural: aesthetic, educational, spiritual, recreational

- What is **value**: "**welfare utility**" (satisfy human needs) vs "**price**" of a good or service
 - Valuation encompasses two main principles of welfare economics: preferences and money

Why consider valuation?

- Give a market value for non market goods (un-priced) such as ecosystem services
- Valuation captures tradeoffs in a world of scarce resources and conflicting desires/interests
 - -> better resource management decisions

ES categories and examples of valuation

Provisioning services

• Estimation of soil erosion costs in relation to investment in erosion reduction

Regulating services

• Estimation of costs of pollution to set up payments for maintenance

Source: TRUCOST, 2013, p. 25

ES categories and examples of valuation

Cultural services

• Estimation of aesthetic and spiritual values to protect cultural/spiritual assets

Supporting services

• Difficult to value

Welfare economics & valuation

- Society needs to choose the mix of environmental service flows that is consistent with the highest possible level of human well-being
- Monetary valuation derives demand curves for environmental services
- D depicts the sum of the individuals' willingness to pay for Qs of it
- Area A: **consumer surplus** (net benefit of a good to consumers)

Some important terms

- WTP = willingness to pay for a change in environmental quality
 - E.g. preservation (instead of extinction) of a species
- WTA = willingness to accept compensation for a change in environmental quality
 E.g. for an increase of X in noise level in the neighbourhood due to increase in air traffic
- WTPs and WTAs for the same environmental change often differ: WTP<WTA

... It all relates to "well-being": individual's preferences and their **willingness to pay for gains** or to **accept compensation for losses**

Total Economic Value

= sum of WTP/WTAs for change in policy/project

ILHAM-EC workshop Sassari, January 22th – 24th, 2018 – Dr Nicola Favretto, University of Leeds

Non demand based methods – Market price

- Market price: Observe prices directly in markets
 - \odot E.g. Timber and fuel wood from forests
 - Advantage: easy to apply
 - Disadvantage: market prices can be distorted by subsidies

Revealed preference methods – Hedonic price

- Preferences and values are 'revealed' in complementary or surrogate markets
- **Hedonic price**: estimates economic values of ecosystem services that directly affect the price of marketed goods, E.g.:
 - Explores **WTP for environmental quality** in property sales e.g. proximity of park to house
 - Property prices are explained by a function of environmental attributes
 - **Regression analysis** used to estimate increments in property values with different environmental and structural attributes

Hedonic price case study (Van Beukering et al. 2007)

- Amenity value of coastline in Guam using actual behaviour
- Environmental goods presence of a clean beach and healthy coral reef
- 2000-2004 Statistical analysis of database of 800 house sales showed that every additional km from the coast the value of a house declined by US\$ 17,000
- Extrapolation results yielded total annual amenity value of coastal attributes as US\$9.6 million

Revealed preference methods – Travel cost

- Method used to value sites that are used for recreation
- Travel expenses (number of visits), local expenditure and time costs
- Visitors *total expenditure* is used to estimate *demand* for services on site; then it's aggregated to derive *total benefit*
- Travel cost method involves tricky questions: what costs to include and how to distinguish costs that are incurred for other reasons

ILHAM-EC workshop Sassari, January 22th – 24th, 2018 – Dr Nicola Favretto, University of Leeds

Travel cost case study (Pieter van Beukering et al. 2010)

- Recreational value of Hawaiian coral reefs
- Define zonal distribution of coral reef visitors to Hawaii
- Travel costs: actual costs of transportation, cost of travel time and local expenditures
- Most visitors come by plane: airfares used
- Time cost was calculated using wage rates (i.e. opportunity costs)
- Travel costs and visitation rates yielded a **demand curve** for Hawaiian tourism
- Marine active tourists spent **18% of expenditures on coral reefs**
- Total reef associated **consumer surplus** was US\$97 million

Stated preference methods – Contingent valuation

• Asking people their WTP/WTA for an environmental service

CASE STUDY (Arin and Kramer 2002)

- Environmental policy Demand for dive trips to 3 protected coral reef areas in the Philippines
- **Survey** Tourists were surveyed in 1997 using face to face interviews
- How much would you be willing to pay as a daily, per person entrance fee to a marine sanctuary where fishing is prohibited in addition to the costs of the trip?

US\$0, US\$1, US\$3, US\$5, US\$10 and other (please specify)

Contingent valuation – case study

- Results showed positive WTP to enter sanctuaries
- Revenues could support:
 - \circ Coral reef conservation
 - Employment for fishermen banned from fishing (compensation)

US£0.85-1M on Mactan

Stated preference methods – Choice experiments

- CEs depicts economic values as collections of attributes
- CE's addresses some difficulties of CV by **asking people to value attributes** of an environmental good
- Advantages:
 - Efficiency: respondents evaluate multi-attributes simultaneously
 - Intuitive and more meaningful elicitation of value

Choice modelling:

the monetary value of environmental services can be estimated from the trade-offs people make between environmental attributes and income

Box one contains extremely good weather and one whale will be spotted during the holiday. The package costs \$100

Box two contains mildly good weather and two whales will be spotted during the holiday. The package costs \$150

Choice experiments case study

 Local WTP for coral reef conservation focusing on local recreational use, abundance of culturally significant fish and non-commercial fishery values

Findings:

- Recreational benefits/supply of culturally significant fish most important
- Sharing of fish with family and friends more important than re-sale
- Attitudes: more concerned with pollution than ban on harmful fishing practices

Attributes	Option 1	Option 2	Current situation
REEF RECREATION Number of recreation areas provided by coral reefs	20% less	20% more	No change
FISH CATCH Reef fish & seafood caught on the average fishing trip is enough for:	One meal	meal + sharing + selling	One meal
CULTURAL FISH Amount of cultural fish (e.g. baby Rabbitfish & baby Goatfish)	20% less	20% more	No change
REEF MANAGEMENT PRACTICES	None (outside the MPAs)	Measures taken	None (outside the MPAs)
POLUTION FROM LAND Change in the amount of pollution entering reef (e.g. sediment, sewage)	20% more	20% less	No change
INCOME TAX Change in the amount of income tax that you pay on a yearly basis	\$40/year less	\$40/year more	No change
Which of the options do you prefer?	Option 1	Option 2	Current situation

Co-funded by the Erasmus+ Programme of the European Union

Benefit transfer method

- Borrowing WTP for one site and applying to another
- Why use this method? Limited resources
- Pre-conditions:
 - Original study should be valid and rigorous
 - Populations and study sites (i.e. environmental characteristics) must be similar

Conclusion

- Value and price are different concepts
- There are multiple types of values you should be familiar with them by now
- The **Total Economic Value** provides a useful framework for comprehensive valuation of ecosystem services under their multiple categories
- There is no "one best" method: Ecosystem services can be valued using a variety of methods – each one serves different purposes and has got its own pros and cons
- Ecosystem valuation is not "precise", but it provides useful information that can support policy and decision making in a world or finite resources