برنامج درجة الماجستير المشتركة في "الإدارة المستدامة للأراضي" بنظام الساعات الأوروبية ECTS وما يعادلها بنظام الساعات المعتمدة بين جامعات القاهرة-الإسكندرية-الزقازيق-دمنهور ضمن الاطار العام للائحة الدراسات العليا بالكليات المشاركة ## المحتويات #### مقدمة ### الباب الاول: ادارة وتنسيق البرنامج - اللجنة العلمية للبرنامج على مستوى كل كلية من كليات الجامعات المشاركة بالبرنامج - اللجنة التنسيقية للبرنامج (على مستوى الجامعات المشاركة بالبرنامج) - الشروط العامة للتقدم للدرجة (التسجيل) - الشروط العامة لمنح الدرجة ### الباب الثاني: التوصيف الأكاديمي لبرنامج الماجستير ### الباب الثالث: محتوى المقررات الدراسية - الرؤية Vision - الرسالة Mission - الأهداف Objectives - مخرجات التعلم المستهدفة Intended Learning Outcomes - المحتوى العلمي لدرجة الماجستير ### الباب الرابع: أحكام أو ترتيبات إنتقالية ### الملاحق: - ملحق 1: جدول (أ): مدى استيفاء البرنامج للمعايير الأكاديمية القياسية القومية (NARS) ومدي اتساق المخرجات التعليمية المستهدفة من البرنامج مع المقررات الدراسية - ملحق (2): توصيف المقررات الدراسية ### مقدمة نشأت فكرة إنشاء درجة ماجستير بهدف إرساء وترسيخ أسس الإدارة المستدامة للأراضي بمفهومها الشامل المتكامل بين مختلف مجالات الإنتاج الزراعي بناءًا علي دراسة وافية لاحتياجات المجتمع والسوق على جميع مستوياته المحلية والإقليمية لتفعيل هذا المفهوم الذي يضمن استدامة الموارد لتفي باحتياجات الأجيال الحالية واللاحقة من الموارد الغذائية المتنوعة، بمبادرة من ممثلي بعض الجهات الأوروبية (مركز أبحاث التصحر - جامعة ساساري – ايطاليا، جامعة ليدز – المملكة المتحدة، جامعة أرسطو – اليونان، اتحاد جامعات البحر المتوسطية UNIMED، شركة نظم الحاسبات المتقدمة .(A.C.S) وأربع جامعات مصرية (القاهرة، الإسكندرية، الزقازيق، دمنهور) لإعداد مقترح لمشروع انشاء درجة ماجستير مشتركة بعنوان: ### "الإدارة المستدامة للأراضي" Sustainable Land Management في إطار برنامج Erasmus Plus KA2 لدعم تطوير التعليم العالي والذى بدوره وافق على تمويل المشروع والذى كان من ثماره هذا المقترح الذي يهدف إلي إنشاء و تفعيل درجة ماجستير مشتركة بين الجامعات المصرية الأربعة تتميز بالخصائص والمردودات التالية: - 1- يتيح هذا البرنامج فرصا لتبادل الخبرات العلمية والبحثية بين أعضاء هيئة التدريس والطلاب في الجامعات المصارية المشاركة وكذا الجامعات الأوروبية المشاركة في المرحلة الحالية ومن جامعات أخرى في مراحل لاحقة. - 2- الاستفادة من وجود خبرات متميزة من جامعات أوروبية شاركت مع متخصصين متميزين من ممثلي الجامعات المصرية المشاركة في إعداد محتوى درجة الماجستير والتي روعي فيها إدارة المقررات والأنشطة الدراسية بنظام الساعات المعتمدة الأوروبي (ECTS) وما يعادلها بنظام الساعات المعتمدة الأمريكية المعترف به بالجامعات المصرية (ECH)، وكذلك إستثمار الإمكانات المتنوعة التي تزخر بها الجامعات المشاركة لسد احتياجات السوق المحلية والإقليمية والعالمية. - 3- زيادة الوعى المجتمعى حول أهمية الإدارة المستدامة المتكاملة للأراضي من خلال الممارسات البحثية والتطبيقية المدعومة بالخبرات الأكاديمية خلال تنفيذ مشروعات درجة الماجستير المقترحة (الإدارة المستدامة للأراضي). - 4- إمكانية تطبيق وتفعيل أحدث التقنيات في التي تؤمن الإدارة المستدامة للأراضي الزراعية وغير الزراعية بمشاركة خبراء ومتخصصين في هذا المجال محليًا وأوروبيًا. - 5- الخريجون من درجة الماجستير في الإدارة المستدامه للموارد الأرضيه سوف يكونوا مؤهلين للعمل في مواقع مختلفه مثل: - إدارة وتخطيط الموارد الأرضيه وخاصة في التوسعات العمر انية والزراعية. - مشروعات تنمية الأراضي. - معالجة المشاكل الناشئة عن التوغل العمر اني وتصحر الأراضي الزراعية. - تقييم الأثر البيئي لمشروعات التنمية الزراعية. - المشاركه في وضع وتنفيذ سياسات استخدام الأراضي الزراعية وشؤون الأمن الغذائي. - استصلاح الأراضى ومشروعات التنمية الزراعية المتخصصة. - أخصائي إدارة خصوبة التربة. - المحميات الطبيعية (المناطق المحمية). - التوظيف مع وكالات إدارة الأراضي الزراعية مثل وزارة الزراعة ومنظمات التخطيط المحلية والإقليمية مثل وزارة الإسكان والتعمير والشركات الاستشمارية في قطاع التنمية الزراعية. - مجال الزراعة الدقيقة التي تتطلب مهنيين يمكنهم التعامل مع البيانات وتطبيقات الحاسوب ولتعامل مع نظم المعلومات الجغرافية GIS والاستشعار عن بعد. وسوف يتم تدريس درجة الماجستير فى الادارة المستدامة للأراضي فى اربع جامعات مصرية فى نفس الوقت حيث ان المقررات الدراسية بها قد تم وضعها بصورة مشتركة بين الاربع جامعات المصرية بالتعاون مع الشركاء الاوروبييين ، وكذلك فإن توزيع هذه المقررات على الفصول الدراسية واحد فى الاربع جامعات كما تم وضع جدول يوضح كود هذه المقررات الدراسية فى الاربع جامعات. ### الباب الأول: ادارة وتنسيق البرنامج ### 1) اللجنة العلمية للبرنامج على مستوى كل كلية من كليات الجامعات المشاركة بالبرنامج: يتم تشكيل لجنة علمية للتنسيق للبرنامج برئاسة السيد الأستاذ الدكتور/ العميد أو وكيل الكلية لشؤون الدراسات العليا والبحوث، ويجوز تحديد أحد الأقسام العلمية بالكلية للتنسيق لبرنامج درجة الماجستير المقترحة طبقا لرؤية الجامعة المشاركة. في حالة تشكيل لجنة علمية للتنسيق للبرنامج يجب مراعاة البنود التالية: - 1- يتم تشكيل اللجنة بقرار من مجلس الكلية أو العميد يتضمن أسماء رئيس اللجنة وأعضائها بحد أقصى إجمالي سبعة (7) على أن يراعى أن تتضمن اللجنة عضو ممثل على الأقل من كل قسم علمي يقوم بالمشاركة في تدريس مقررات البرنامج. - 2- مدة سريان عمل اللجنة 3 سنوات در اسية متتالية. - 3- تجتمع اللجنة بمقر يحدده عميد الكلية وترفع توصياتها لمجلس القسم المختص للاعتماد من عميد الكلية أو مجلس الكلية المختص لكل جامعة. - 4- مهام اللجنة: تقوم اللجنة برفع توصياتها لمجلس القسم المختص / المعني بالموضوع على مستوى الكلية فيما يخص المهام المتضمنة التاليه: - أ- التوصية بتوزيع ملفات الطلاب المتقدمين على المشرفين الأكاديميين المقترحين بالأقسام العلمية المعنية بالكلية لاستكمال الملف واجراءات التسجيل. - ب- مراجعة المواضيع البحثية للتأكد من توافقها مع الخطة البحثية للكلية والجامعة وكذا مع أهداف ومخرجات البرنامج. - ج- مراجعة تقارير تقدم الطالب السنوية قبل إعتمادها من مجلس الكلية. - د- اقتراح أسماء القائمين بالتدريس لكل مقرر بالبرنامج على مستوى الكلية. - ه- مراجعة الإفادات بتقديرات المقررات التي درسها الطالب المنتسب من جامعات أخرى والأنشطة التي قام بها في الجامعة المضيفة. - و- البت في أي طلبات/ شكاوى...إلخ ورفع توصيتها لمجلس القسم المختص لرفعها لمجلس الكلية بالجامعة التي قام الطالب بالتسجيل فيها للإعتماد. - ز- الرد على استفسارات الراغبين في الالتحاق بالبرنامج. - ح- متابعة الأداء وكتابة التقرير السنوي للبرنامج من خلال فحص تقارير المقررات وما تتضمنه من مقترحات التحسين والأفعال التصحيحية. - ط- التسويق للبرنامج على مستوى الكلية/الجامعة. ### 2) اللجنة التنسيقية للبرنامج (على مستوى الجامعات المشاركة بالبرنامج): - 1- يتم تشكيل اللجنة من 8 اعضاء (عضوين من كل جامعة) علي أن يمثل الجامعة رؤساء اللجان العلمية بالبرنامج أو من تفوضه كل كلية من الجامعات المشاركة بالإضافة إلى عضو آخر من أحد الأقسام التي تقوم بالتدريس في البرنامج. - 2- مدة سريان عمل اللجنة 4 سنوات در اسية متتالية. - 3- يرأس اللجنة أحد أعضائها بالتناوب بين ممثلى الجامعات المشاركة كل عام على أن يكون الانتخاب في الثلاث أعوام الأولى هو طريقة اختيار رئيس اللجنة مع استبعاد من تم اختياره مسبقًا لرئاسة اللجنة خلال العام الثاني والثالث. ### 4- مهام اللجنة التنسيقية: - أ- البت في الأمور المتعلقة بتبادل الأساتذة واختيار الطلاب بين الجامعات المشاركة. - ب- البت في انضمام جامعات أخري (مصرية أو أوروبية أو غيرها) للبرنامج. - ج- النظر في الأمور المتعلقة بتطوير وتحسين جودة البرنامج. - د- التسويق للبرنامج على جميع المستويات. - ه- النظر في الشكاوى المقدمة للجنة التنسيقية عن المشاكل المحتملة بين الجامعات ورفع توصيات بالحلول المقترحة للقسم العلمي المختص / اللجان العلمية بكليات الجامعات المشاركة. - 5- تنعقد اللجنة مرة على الأقل كل فصل دراسى لتمارس مهامها من القسم العلمي المختص / أحد مواقع اللجان العلمية للبرنامج على مستوى الكلية بالجامعات المختلفة وارسال توصياتها إلى القسم العلمي المختص / اللجنة العلمية للبرنامج والتى تقوم برفعها إلى عميد الكلية أو مجلس الكلية المعنى بكل جامعة للإعتماد والتفعيل. ### 3) الشروط العامة للتقدم للدرجة (التسجيل): - 1- يتقدم الطالب للتسجيل بإدارة الدراسات العليا بالكلية التابعة لأحد الجامعات المشاركة في البرنامج والتي يرغب في الحصول على شهادته منها ووفقًا للشروط العامة والخاصة المعتمدة بالكلية. - 2- يحق للطالب دراسة مقرر/فصل دراسي/عام كامل بأى من كليات الجامعات الأخرى المشاركة في البرنامج بناء على رغبته بعد إعداد طلب رسمى (موقعا من المرشد الأكاديمي ومعتمدًا من إدارة الكلية) وبعد فحصه من قبل القسم العلمي المختص / اللجنة العلمية للبرنامج، ثم موافقة لجنة إدارة البرنامج / القسم العلمي المختص (بالكلية المضيفة)، وذلك بعد سداد الرسوم المقررة والتي تحددها الكلية المضيفة. - 3- يسجل الطالب بالجامعة المضيفة كطالب منتسب المقرر /فصل در اسي/عام جامعي. - 4- بعد انتهاء الطالب المنتسب من المقررات الدراسية / الفصل الدراسي / العام الجامعي يُمنح إفادة معتمدة من الكلية/ الجامعة المضيفة بتوصية من لجنة إدارة البرنامج بتقديرات المقررات والأنشطة التي قام بأدائها بالجامعة المضيفة لتعادل ما يناسبها بالجامعة المسجل بها، وتضاف إلى السجل الدراسي للطالب. - 5- يتبع النظام الكودى للمقررات الدراسية نظام الكلية بكل جامعة مشاركة. ويدرج هذا داخل دليل يوزع علي الطلبة الراغبين في التسجيل وينشر علي الموقع الرسمي للبرنامج المشترك بين الجامعات المختلفة المشاركة، كما هو موضح بجدول (1). - 6- تُطبق القواعد الواردة بقانون تنظيم الجامعات ولائحته التنفيذية المعدلة له، والقوانين الأخرى ذات الصلة والمعتمدة من الدولة فيما لم يرد في شأنه نص خاص بهذه الشروط. ### 4) الشروط العامة لمنح الدرجة: - 1. يراعى القواعد المنظمة والمنصوص عليها بلائحة الدراسات العليا بالكلية فيما يتعلق لمتطلبات منح الدرجة. - 2. يتم تقييم الطالب بالمقررات التي درسها وفقا للنقاط والتقدير التي تتناسب وشروط وقواعد كل كلية من الجامعات المشاركة، ويوضح جدول (2) انموذجًا لها. ### جدول (1): مقارنة كود المقررات الدراسية في الجامعات المشاركة بالبرنامج | كود جامعة | كود جامعة | كود جامعة | كود جامعة | اسم المقرر | |-----------|-----------|------------|-----------|---| | دمنهور | الزقازيق | الاسكندرية | القاهرة | | | SLM 27805 | SLM 701 | SLM 14730 | SLM 805 | النظام البيئى الزراعي | | SLM 27806 | SLM 702 | SLM 14731 | SLM 806 | التنوع الحيوى وخدمات النظام البيئى | | SLM 27807 | SLM 703 | SLM 14732 | SLM 807 | تدهور الاراضى متقدم | | SLM 27809 | SLM 704 | SLM 14733 | SLM 809 | نظم المعلومات الجغرافية والتحليل المكانى | | SLM 27808 | SLM 705 | SLM 14734 | SLM 808 | تحليل طيفى متقدم | | SLM 27810 | SLM 707 | SLM 14760 | SLM 810 | اقتصاديات تدهور الاراضى | | SLM 27803 | SLM 724 | SLM 14761 | SLM 803 | التحليل الاحصائى الزراعي | | SLM 27801 | SLM 790 | SLM 14762 | SLM 801 | لغة انجليزية للباحثين وكتابة المشروعات البحثية | | SLM 27804 | SLM 794 | SLM 14763 | SLM 804 | طرق البحث والتواصل العلمى | | SLM 27799 | SLM 791 | SLM 14799 | SLM 899 | تدریب میدانی | |
SLM 27700 | SLM 793 | SLM 14700 | SLM 850 | بحث علمى (الرسالة العلمية) | | SLM 27701 | SLM 792 | SLM 14701 | SLM 800 | مناقشات في الادارة المستدامة للأراضي | | SLM 27851 | SLM 708 | SLM 14735 | SLM 851 | تخطيط استخدام الارض للتنمية المستدامة | | SLM 27853 | SLM 709 | SLM 14736 | SLM 853 | تقييم اراضى منقدم | | SLM 27855 | SLM 710 | SLM 14737 | SLM 855 | تغير المناخ والامن الغذائي | | SLM 27857 | SLM 711 | SLM 14738 | SLM 857 | نمذجة تغيرات استخدام الارض | | SLM 27859 | SLM 712 | SLM 14739 | SLM 859 | سياسات وتشريعات استخدام الارض | | SLM 27861 | SLM 713 | SLM 14740 | SLM 861 | تلوث ومعالجة الاراضى والمياه متقدم | | SLM 27863 | SLM 714 | SLM 14741 | SLM 863 | مدخل النظم لادارة الموارد المائية | | SLM 27865 | SLM 715 | SLM 14742 | SLM 865 | الجوانب الاجتماعية والاقتصادية في إدارة الموارد المانية | | SLM 27867 | SLM 716 | SLM 14743 | SLM 867 | الادارة المستدامة لخصوبة التربة | | SLM 27869 | SLM 717 | SLM 14744 | SLM 869 | نظم الزراعة البديلة | | SLM 27871 | SLM 718 | SLM 14745 | SLM 871 | نمذجة النظام النباتي في ادارة الارض | | SLM 27873 | SLM 719 | SLM 14746 | SLM 873 | نمذجة النظام الحيواني في ادارة الارض | | SLM 27875 | SLM 720 | SLM 14747 | SLM 875 | الادارة (المكافحة) المتكاملة للافات | | SLM 27877 | SLM 721 | SLM 14748 | SLM 877 | الاقتصاد الزراعي التطبيقي | | SLM 27879 | SLM 722 | SLM 14749 | SLM 879 | ادارة المخلفات الزراعية متقدم | 3. يُمنح الطالب شهادة درجة الماجستير المشتركة في الإدارة المستدامة للأراضي مشتملة على رموز الجامعات المشاركة بالبرنامج (Participating Universities Logos) علي أن تُعتمد بتوقيع رئيس الجامعة (أو من ينوب عنه أو يفوضه) التي قام الطالب بالتسجيل فيها. جدول رقم (2): تقييم الطالب بالنقاط والتقدير | الدرجة | النقاط | التقدير | التقدير | |---------|--------|---------|--| | >- 90 | 4.000 | A | ممتاز | | 85 < 90 | 3.666 | A- | | | 80 < 85 | 3.333 | B+ | ختر خدا | | 75 < 80 | 3.000 | В | | | 70 < 75 | 2.666 | B- | ختر | | 65 < 70 | 2.333 | C+ | | | 60 < 65 | 2.000 | С | مقبول | | 55 < 60 | 1.666 | C- | ضعيف | | 50 < 55 | 1.333 | D+ | | | 40 < 50 | 1.000 | D | | | < 40 | 0.000 | F | ضعيف جدا | | | | W | يرصد للطالب المنسحب من مقرر | | | | FW | يرصد للطالب المنسحب إجبارياً من المقرر | | | | I | يرصد للطالب الذي لم يكمل متطلبات المقرر | | | | MW | يرصد للطالب المنسحب لأداء الخدمة العسكرية | | | | L | يرصد للطالب المسجل مستمع | | | | IP | يرصد للطالب المسجل لساعات الرسالة العلمية ولم تكتمل بعد | | | | S | يرصد للطالب تقدير مرضى عند مناقشة الرسالة العلمية بنجاح | | | | U | يرصد للطالب تقدير غير مرضى عند رسوبه في مناقشة الرسالة العلمية | ### الباب الثاني: التوصيف الأكاديمي لبرنامج الماجستير ### الرؤية Vision نشر ثقافة راقية وممارسات سليمة للإدارة المستدامة للأراضي حفاظا على النظم البيئية وتحقيقا لتنمية زراعية ومجتمعية. ### الرسالة Mission اعداد كوادر متخصصة مؤهلة في مجال الإدارة المتكاملة والمستدامة للأراضي على وعي بالمعلومات والتقنيات الحديثة ومزودة بالمهارات العامة والمتخصصة التي تمكنها من المنافسة في سوق العمل ومواجهة المشكلات الحالية والمستقبلية ومواكبة التطورات العالمية. ### Objectives الأهداف تهدف درجة الماجستير الجديدة إلى تزويد الخريجين بالمعرفة اللازمة والفهم العميق للنواحى العلمية والعملية والسياسات والأطر التشريعية وكذلك تزويدهم بالمهارات العاليه في مجال الإدارة المستدامة للأراضي وذلك عن طريق: - بناء القدرات وتحسين طرق وجودة التدريس بحيث تتجاوب مع الإحتياجات القوميه و تتواكب مع المرجعيات العالميه. - بناء شبكة تواصل لدعم الشراكه الفعالة والتعاون مع مختلف الأطراف المعنية بمجال الإدارة المستدامة للأراضي محليا ودوليا. - توفير الأسس العلميه لمنهجية الإدارة المستدامة للأراضي في النظام البيئي الشامل والمتكامل. - تعلم الطلاب كيفية التقييم النقدي للقضايا العملية وفهم السياسات المعقدة التي تنطوي عليها الإدارة المستدامة للأراضي وصولاً إلي حلول وإستراتيجيات تطوير سليمة. - تتيح درجة الماجستير الجديده للطلاب النطرق والتعمق والتركيز على بعض قضايا التنمية الوطنية المختارة مثل الأمن الغذائي والزراعة المستدامة. - سد متطلبات الدوله والشركات من الكوادر المتخصصة والمدربة تدريبًا عاليًا والقادرة على تنفيذ استراتيجيات الإدارة المستدامة للأراضى والمياة. - تزويد الخريجين بقدرات تحليل المشاكل الحقيقية للأراضي من خلال العمل الميداني وصولا إلي حلول واقعية وناجزة. - تبنى منهجية التخصصات التعددية والبينية في مجال الإدارة المتكاملة للأراضي وصولا لتقييم أشمل وحلولا أنجح في مجابهة المشكلات المحلية والإقليمية من خلال النظرة المتكاملة الشاملة التى تستند على قاعدة واسعة من مجالات علمية شتى من العلوم البحتة والتطبيقية الزراعية والهندسية والعلوم الاجتماعية والقانونية والاقتصادية. التركيز على آليات حماية الأراضي في مصر العربية ودول المنطقة العربية والافريقية ومواجهة مشكلات تدهور الأراضي الزراعية وتراجع مساحاتها نتيجة للتصحر والزحف العمراني مما يعقد قضية الامن الغذائي ويقلل من القدره على تحقيق التنمية المستدامة. ### مخرجات التعلم المستهدفة Intended Learning Outcomes ### أ) المعرفة والفهم Knowledge and Understanding - أ1- يُدرك النظريات والأسس العلمية الخاصة بإدارة وتخطيط الأراضي والمياه وتتميتها المستدامة. - أ2- يُعرِّف النظريات والظواهر العلمية لمجالات العلوم الأخرى (إحصاء اقتصاد....) وثيقة الصلة بالإدارة المستدامة للأراضى. - أ3- يتعرف على الجوانب السلبية والايجابية لممارسة المهنة في الحفاظ على البيئة. - أ4- يُدرك أهمية الاستخدام الآمن للمبيدات واضافاتها. - أ5- يُحدد اجراءات السلامة المهنية للعمل في مجالات الإدارة المستدامة للأراضي. - أ6- يُعد موضوعات علمية حديثة في أحد مجالات الإدارة المستدامة للأراضي. - أ7- يتعرف على التقنيات الحديثة المتبعة في نمذجة أنظمة الإنتاج الزراعي المختلفة. - أ8- يُلم بالمبادئ والتشريعات القانونية والأخلاقية الخاصة بممارسة المهنة في مجال الإدارة المستدامة للأر اضي. - أ9- يتعرف على معايير ومواصفات جودة الأداء في مجال الإدارة المستدامة للأراضي. - أ10- يُلم بمبادئ وأخلاقيات البحث العلمي في مجال الإدارة المستدامة للأراضي. ### ب) المهارات الذهنية والفكرية Intellectual Skills - ب1- يُناقش البيانات والمعلومات المتعلقة بمشاكل الإدارة المستدامة للأراضي. - ب2- يُقيم المعلومات والظواهر الخاصة بمشاكل الإدارة المستدامة للأراضى. - ب3- يُحدد المشاكل المتعلقة بمعوقات الإدارة المستدامة للأراضى تحت الظروف الطبيعية والمعاكسة. - ب4- يضع حلول للمشاكل في ضوء البيانات والمعلومات التي تم جمعها. - ب5- يربط المعارف والمفاهيم الخاصة بعلوم الإدارة المستدامة للأراضي مع العلوم الأخرى لحل مشاكل الإنتاج المختلفة. - ب6- يُصمم برنامج أو أنموذج لتعظيم انتاجية الأراضي. - ب7- يصف الأساليب العلمية الطرق الاحصائية المناسبة في تنفيذ المشروع البحثي. - ب8- يُصمم مشروع بحثى يتناول حل مشكلة متعلقة بمجال الإدارة المستدامة للأراضى. - ب9- يُحدد المخاطر ذات الصلة بعمليات الانتاج الزراعي (النقل التداول الذبح التصنيع التخزين ألخ). - ب10- يُخطط لتلافى المخاطر باستخدام وسائل وطرق الأمن والسلامة المناسبة. - ب11- يتخذ القرار المناسب للتعامل مع المشاكل المتعلقة بالإدارة المستدامة للأراضي. ### ج) المهارات المهنية والعملية Professional Skills - ج1- يُحلل العينات معمليًا باستخدام الأجهزة المناسبة. - ج2- يُقيم نتائج التحليل ويستخدمها لتعظيم الإستفادة في اطار الإدارة المستدامة للأراضي. - ج3- يُطبق برامج الإدارة المناسبة لظروف الإنتاج المختلفة. - ج4- يستخدم التقنيات الحديثة في مجال الإدارة المستدامة للأراضي. - ج5- يُعد التقارير العلمية الفنية المتخصصة. - ج6- يكتب مقترح لمشروع بحثى في مجال التخصص. - ج7- يُطبق أساليب الانتاج المثلي في نطاق الإدارة المستدامة للأراضي. - ج8- يستخدم مستلز مات الانتاج المناسبة في مجال الإدارة المستدامة للأراضي. - ج9- يستخدم الطرق والحزم الاحصائية بكفاءة ويختار المناسب منها لمعالجة وتحليل وعرض البيانات وتفسير النتائج. ### د) المهارات العامة General and Soft Skills - د1- يُشارك مع الآخرين في المناقشات العلمية شفاهة وكتابة. - د2- يُقدم عروض الكترونية مرئية باللغتين العربية والانجليزية. - د3- يستخدم بكفاءة تكنولوجيا المعلومات وتقنيات الحاسب في مجال التخصص. - د4- يُحلل البيانات باستخدام برامج الحاسب الألى المناسبة. - د5- يُشارك في المشروعات البحثية والندوات والمؤتمرات وورش العمل بهدف تنمية مهاراته الشخصية والأكاديمية والمهنية. - د6- يستخدام قواعد البحث الالكترونية بكفاءة للحصول على المعلومات المتعلقة بمجال تخصصه. - د7- يُشارك في تقييم زملائة. - د8- يعمل بكفاءة ضمن فريق و يظهر مهارات قيادة فريق عمل بتحديد أهداف ومسئوليات المشاركين لانجاز مهمة في مجال التخصص. - د9- يُدير الوقت أثناء المناقشات العلمية بفاعلية ويعمل تحت ضغط لانجاز مهمة علمية. - د 10- يستخدم مدى واسع من المصادر المعلوماتية بشكل فعال ومستمر (شبكة المعلومات-المكتبة- النشرات الفنية- الدوريات والكتب المرجعية...). ### المحتوى العلمي لدرجة الماجستير: لكى يحصل الطالب على الماجستير في الإدارة المستدامة للموراد الارضية فيجب عليه أن يجتاز بنجاح المقسررات الدراسية الخاصة بالبرنامج طبقاً لنظام الساعات المعتمدة الأوروبية الدراسية الخاصة بالبرنامج طبقاً النظام الساعات المعتمدة الأمريكية المعترف (System (ECTS) وما يعادلها بنظام الساعات المعايير القومية المعايير القومية المعايير القومية المعايير القومية القياسية (RARS) لدرجة الماجستير والمعتمدة من الهيئة القومية لضمان جودة التعليم والإعتماد (NARS)، والتي تتسق مع المخرجات التعليمية المستهدفة من البرنامج (الملحقات جدول أ) كما يلي: 1- يشتمل البرنامج على 120 ساعة اوروبية معتمدة تعادل 38 ساعة معتمدة أمريكية يقوم الطالب بدراستها خلال عاميين اكاديميين تنتهي بعد اجتيازها بنجاح بالاضافة الى إعداد الرسالة العلمية ومناقشتها بنجاح بالحصول على درجة الماجستير في الإدارة المستدامة للموراد الارضية، كما هو موضح بشكل (1) وجدولي (3، 4). 2- يتكون البرنامج من مجموعة من المقررات الدراسية الإجبارية والاختيارية يصل مجموعهما إلى 90 ساعات أوروبية (تعادل 30 ثلاثين ساعة معتمدة امريكية) بالإضافة إلى إعداد رسالة علمية بعدد 30 ساعة أوروبية (تعادل 8 ثمانية ساعات معتمدة امريكية) كما يلي: ### أ- المقررات الدراسية الاساسية: - 1) يتطلب البرنامج دراسة 24 ساعة معتمدة من المقررات الاساسية (الإجبارية العامة). - 2) هذه المقررات الاجبارية تتبع 6 مجالات عامة بالإضافة للرسالة العلمية، كما هو موضح في شكل (1) وجدول (3)، وتشتمل على 15 ساعة معتمدة مقررات اجبارية موزعة على 3 مجالات، 4 ساعات معتمدة للتدريب الميداني، 3 ساعات ساعات معتمدة مناقشات، ساعتان معتمدتان للغة الإنجليزية وطرق البحث والتواصل. ### ب- المقررات الدراسية التخصصية / الإختيارية: - 1) يقوم المرشد الأكاديمي الطلاب بتوجيه الطلاب الى كيفية اختيار المقررات التخصصية. - 2) تزود هذه المقررات الطلاب بالمهارات المعرفية التخصصية وجميعها مقررات اختيارية تتطلب دراسة 18 ساعة أوروبية تعادل 6 ساعات معتمدة (3 مقررات) من احد المجالات التخصصية الموضحة في شكل (1) وجدول (3). ### ت- البحث والرسالة العلمية: يشتمل برنامج الماجستير على عمل بحث وإعداد رسالة علمية بما يعادل 30
ساعة معتمدة أوروبية (8 ساعات معتمدة أمريكية معتمدة بالجامعات المصرية). 3- الطلاب من خارج التخصص: إذا تقدم الطالب للتسجيل في غير مجال تخصصه في درجة البكالوريوس في العلوم الزراعية يكلف بدراسة عدد من الساعات المعتمدة التكميلية من مقررات مرحلة البكالوريوس والتي يحددها مجلس القسم العلمي المختص / اللجنة العلمية للبرنامج بالجامعة التي يسجل فيها الطالب، والتي لم يسبق له دراستها كمقررات مؤهلة لدراسة الماجستير على أن ينجح فيها بتقدير عام جيد مرتفع (75% فأعلى من درجة النهاية العظمي أو ما يعادلها +C) على الأقل حتى يمكن تسجيله لدرجة الماجستير. شكل (1): توزيع المقررات الدراسية لدرجة الماجستير في الادارة المستدامة للأراضي ### جدول (3): مجالات ومقررات درجة الماجستير في الادارة المستدامة للأراضي | | أ- المقررات الاساسية (الاجبارية) 24 ساعة معتمدة تعادل 72 ساعة أوروبية | | | | | | | | | | | | | |--------|---|--|--|--|--|--|--|--|--|--|--|--|--| | ساعة | ساعة | المقررات اجبارية | المجال | | | | | | | | | | | | معتمدة | اوروبية | | | | | | | | | | | | | | 2 | 6 | النظام البيئى الزراعي | الادارة المستدامة للنظم البيئية الزراعية | | | | | | | | | | | | 2 | 6 | التنوع الحيوى وخدمات النظام البيئي | | | | | | | | | | | | | 2 | 6 | تدهور الاراضى متقدم | | | | | | | | | | | | | 3 | 9 | نظم المعلومات الجغرافية والتحليل المكانى | جمع وتحليل بيانات الارض والتحليل الطيفي | | | | | | | | | | | | 2 | 6 | تحليل طيفى متقدم | | | | | | | | | | | | | 2 | 6 | اقتصاديات تدهو الاراضى | اقتصاديات ادارة الارض والزراعة | | | | | | | | | | | | 2 | 6 | التحليل الاحصائى الزراعي | | | | | | | | | | | | | 1 | 3 | لغة انجليزية للباحثين وكتابة المشروعات البحثية | لغة اجليزية علمية وكتابة المشروعات | | | | | | | | | | | | 1 | 3 | طرق البحث والتواصل العلمى | | | | | | | | | | | | | 4 | 12 | تدریب میدانی | التدريب الطلابى | | | | | | | | | | | | 3 | 9 | مناقشات في الادارة المستدامة للأراضي | مناقشات | | | | | | | | | | | | 24 | 72 | | المجموع | | | | | | | | | | | | 8 | 30 | رسالة الماجستير MSc Thesis | |---|----|----------------------------| |---|----|----------------------------| | بية) | ساعة اورو | ال تخصص ثم دراسة 6 ساعات معتمدة تعادل 18 س | ب- المقررات التخصصية (اختيار مج | |--------|-----------|---|-------------------------------------| | ساعة | ساعة | المقررات الدراسية التخصصية | المجال | | معتمدة | اوروبية | | | | 2 | 6 | تخطيط استخدامات الااضى للتنمية المستدامة | تخطيط وتقييم استعمالات الارض | | 2 | 6 | تقييم اراضى منقدم | | | 2 | 6 | تغير المناخ والامن الغذائي | | | 2 | 6 | نمذجة تغيرات التعمالات الاراضى | | | 2 | 6 | سياسات وتشريعات اساتخدامات الاراضى | | | 2 | 6 | تلوث ومعالجة الاراضى والمياه متقدم | الادارة البيئية للأراضي والمياة | | 2 | 6 | مدخل النظم لادارة المياه | | | 2 | 6 | الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية | | | 2 | 6 | الادارة المستدامة لخصوبة التربة | | | 2 | 6 | نظم الزراعة البديلة | | | 2 | 6 | نمذجة النظام النباتى في ادارة الارض | نمذجة النظم الزراعية في ادارة الارض | | 2 | 6 | نمذجة النظام الحيواني في ادارة الارض | | | 2 | 6 | الادارة (المكافحة) المتكاملة للافات | | | 2 | 6 | الاقتصاد الزراعي التطبيقي | | | 2 | 6 | ادارة المخلفات الزراعية متقدم | | | 6 | 18 | | المجموع | ### جدول (4): توزيع المقررات على الفصول الدراسية السنة الاولى: الفصل الدراسى الأول | ساعة معتمدة | ساعة أوروبية | أنشطة | المقررات الدراسية محاضرة عملى | | المقررات الدراسية | | | | |-------------|--------------|-------|-------------------------------------|---|--|--|--|--| | 2 | 6 | 7 | 2 | 1 | التحليل الاحصائى الزراعي | | | | | 2 | 6 | 7 | | | تدهور الاراضى متقدم | | | | | 1 | 3 | 4 | - | 1 | لغة انجليزية للباحثين وكتابة المشروعات البحثية | | | | | 3 | 9 | 11 | بمات الجغرافية والتحليل المكانى 2 2 | | نظم المعلومات الجغرافية والتحليل المكانى | | | | | 2 | 6 | 7 | 2 | 1 | النظام البيئي الزراعي | | | | | 10 | 30 | | مجموع الساعات | | | | | | السنة الاولى: الفصل الدراسي الثاني | ساعة معتمدة | ساعة أوروبية | أنشطة | عملی | محاضرة | المقررات الدراسية | | |-------------|--------------|-------|---------------|--------|--------------------------------------|--| | 2 | 6 | 7 | 2 | 1 | التحليل الطيفى متقدم | | | 2 | 6 | 7 | 2 | 1 | التنوع الحيوى وخدمات النظام البيئي | | | 1 | 3 | 4 | - | 1 | مناقشات في الادارة المستدامة للأراضي | | | 2 | 6 | 9 | - | 1 | اقتصاديات تدهو الاراضى | | | 1 | 3 | 4 | - | 1 | طرق البحث والتواصل العلمى | | | 8 | 24 | | مجموع الساعات | | | | السنة الاولى: الفصل الدراسي الصيفي | ساعة معتمدة | ساعة أوروبية | أنشطة | عملی | محاضرة | المقررات الدراسية | |-------------|--------------|-------|------|--------|-------------------| | 4 | 12 | 12 | 8 | - | تدریب میدانی | | 4 | 12 | | | | مجموع الساعات | السنة الثانية: الفصل الدراسي الأول | ساعة معتمدة | ساعة اوروبية | أنشطة | عملی | محاضرة | المقررات الدراسية | | |-------------|--------------|-------|---------------|--------|--------------------------------------|--| | 1 | 3 | 4 | - | 1 | مناقشات في الادارة المستدامة للأراضي | | | 2 | 6 | 7 | 2 | 1 | من الوحدة التخصصية | | | 2 | 6 | 7 | 2 | 1 | من الوحدة التخصصية | | | 2 | 6 | 7 | 2 | 1 | من الوحدة التخصصية | | | 7 | 21 | | مجموع الساعات | | | | السنة الثانية: الفصل الدراسي الثاني | Ī | ساعة معتمدة | ساعة اوروبية | أنشطة | عملی | محاضرة | المقررات الدراسية | |---|-------------|--------------|-------|---------------|--------|--------------------------------------| | | 1 | 3 | 4 | - | 1 | مناقشات في الادارة المستدامة للأراضي | | | 1 | 3 | | مجموع الساعات | | | | 8 | 30 | 34 | 16 | - | رسالة الماجستير العلمية MSc Thesis | |---|----|----|----|---|------------------------------------| | 8 | 30 | | | | مجموع الساعات | - ساعة أوروبية معتمدة تساوي 25 ساعة فعلية طوال الفصل الدراسي. والفصل الدراسي يعادل 15 إسبوع. الأنشطة يقصد بها أي عملي تعليمي خارج الفصل يتعلق بالمقرر المذكور بما فيها ساعات العمل المنزلي والبحث علي شبكة الإنترنت والزيارات الميدانية وإعداد العروض. - يجوز تدريس المقررات أو اجراء التدريب الميداني بأي الفصول الدراسية بما لا يتجاوز الحد الأقصى للساعات المعتمدة بالفصل الدراسي (30 وحدة أوروبية أو ما يعادلها) وتبعاً لما تقرره ادارة الكلية بناءًا على توصية اللجنة العلمية للبرنامج / القسم العلمي المختص. ### الباب الثالث: محتوى المقررات الدراسية ### أولاً: المجالات الإجبارية: ### 1) مجال الادارة المستدامة للنظم البيئية الزراعية النظام البيئى الزراعي #### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة $\overline{1}$ النظم البيئية: مفاهيم وتعريفات - ديناميكية المغذيات في النظام البيئيي الزراعي – العوامل المتحكمة في ديناميكية المغذيات في النظام البيئيي الزراعي – مادة الارض العضوية – الحشائش في النظام البيئي الزراعي – دور كائنات التربة الحية في النظام البيئي – النظم الحيوانية – تاثير نظم الري – النظم المحصولية – جودة النظام البيئي – التحديات الادارية والسياسية. ### التنوع الحيوى وخدمات النظام البيئى ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة (1) مكونات ووظائف النظم البيئية الطبيعية – خدمات النظام البيئيي – الطرق المختلفة لقياس التنوع الحيوى – التنوع الحيوى – التنوع الحيوى التنوع الحيوى التنوع الحيوى التنوع الحيوى – التنوع الحيوى ووظائف النظام البيئي – تاثير التنوع الحيوى على حفظ الكربون – اتفاقيات التنوع الحيوى الدولية – مستقبل التنوع الحيوى في القرن الحادى والعشرين –التنمية المستدامة والتنوع الحيوي. ### تدهور الاراضى متقدم ### (ECH يعادل 2 ساعة نظرى + 2 ساعة معتمدة + 7 ساعة أنشطة + 3 ساعات اوروبية + 3 يعادل 2 ساعة معتمدة + 3 مفاهيم التصحر والجفاف والاستصلاح والصيانة – التعرية المائية – التعرية الهوائية – التدهور الكيميائي – الاراضى الملحية والقلوية – كبس وتكوين قشرة على سطح الارض – الاراضى وتغير المناخ – نمذجة تدهور الاراضى – استخدام نظم المعلومات الجغرافية والاستشعار عن بعد فى تحديد مدى تدهور الاراضى – تطبيق مفهوم MEADULS فى تقييم تدهور الاراضى ### 2) مجال جمع وتحليل بيانات الارض والتحليل الطيفى نظم المعلومات الجغرافية والتحليل المكانى ### (2 ساعة نظري + 2 ساعة عملى +11 ساعة أنشطة = 9 ساعات اوروبية ECTS تعادل 3 ساعة معتمدة (ECH) المفاهيم الاساسية لنظم المعلومات الجغرافية – نظام تحديد الاحداثيات العالمي – طرق التحليل الرقمي للمرئيات الفضائية في ادارة الموارد الزراعية – اساسيات الاحصاء الجيولوجية - التحليل المكاني – نمذجة منحني الاختلافات – طريقة كريجنج في الحسابات التقديرية - استخدام نظم المعلومات الجغرافية والاستشعار والاستشعار عن بعد في ادارة الاراضي – الزراعة الدقيقة باستخدام نظم المعلومات الجغرافية والاستشعار عن بعد في ادارة الموارد عن بعد في ادارة المعلومات الجغرافية والاستشعار عن بعد في ادارة الموارد المائية للزراعة - استخدام نظم المعلومات الجغرافية والاستشعار عن بعد في ادارة امراض النبات والافات - نظم المعلومات الجغرافية بالمشاركة. ## تحلیل طیفی متقدم (ECH معتمدة عملی +7 ساعة أنشطة =6 ساعات اوروبیة +2 یعادل +2 ساعة معتمدة +3 مقدمة للتحليل الطيفى – النحليل الطيفى الكتلى – النحليل الطيفى باستخدام الضوء المرئى والفوق بنفسجى – التحليل الطيفى باستخدام الاشعة تحت الحمراء - النحليل الطيفى البصرى - النحليل الطيفى باستخدام اللهب - النحليل الطيفى فورير - النحليل الطيفى باستخدام اللهب - النحليل الطيفى الفلوروسنسى - النحليل الطيفى الانبعاثى - النحليل الطيفى بالرنين النووى المغناطيسى. # 3) مجال الاحصاء الحيوي وادارة الاراضى اقتصاديات تدهور الارض اقتصاديات تدهور الارض (ECH) ساعة عملى (ECH) ساعة نظرى (ECH) يعادل 2 ساعة معتمدة (ECH) مقدمة للموارد واقتصاديات البيئة – كفاءة الفحص وانواعه – العرض والطلب في اقتصاديات البيئية – حساب القيمة المتوقعة – هبوط الاسواق والبضائع العامة – الحلول الحكومية لهبوط الاسواق - التضارب بين النمو والحفاظ على البيئة – التنوع الحيوى والتثمين وقيمة الارض – حساب اقتصاديات تدهور الارض. ### التحليل الإحصاء الحيوي ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية = 6 ساعة معتمدة عملى + 7 ساعة معتمدة (1 ساعة نظرى + 2 ساعة عملى + 7 ساعة أنشطة = 6 المفاهيم الاحصائية – القياسات الاحصائية الوصفية – نظرية الاحتمالات – اختبار ت ومقارنة المتوسطات – تحليل التباين وتصميم التجارب: التصميم العشوائي الكامل – المربع اللاتيني – العاملي – المتداخل – اقل فرق معنوي – الارتباط والانحدار – تحليل التباين متعدد المتغيرات – تحليل المكونات الرئيسية – التجمعات. # 4) مجال اللغة الانجليزية العلمية وكتابة المقترحات البحثية لغة انجليزية علمية وكتابة المقترحات # لغة انجليزية علمية وكتابة المقترحات (ECH علمية ECTS يعادل 1 ساعة
معتمدة (ECH) يعادل 1 ساعة معتمدة (ECH) مقدمة – بعض مصطلحات الإدارة المستدامة للأراضي باللغة الإنجليزية – فرص تمويل المقترحات البحثية – الكتابة العلمية - اعداد وكتابة المقترح البحثي – تكوين فريق كتابة المقترح – مكونات المقترح – تنفيذ ومتابعة وتقييم المشروع البحثي – ادارة المخاطر وتحليل نقاط القوة والضعف والفرص والتحديات – مصفوفة الاطار المنطفي والجدول الزمني لانشطة المشروع – مناقشة المشروعات المصصمة بواسطة الطلبة. #### طرق البحث والتواصل العلمى (1 ساعة نظرى + (-) ساعة عملى + 4 ساعة أنشطة = 3 ساعات اوروبية ECTS يعادل 1 ساعة معتمدة ECH) التعبير عن المشكلة البحثية – فرضيات التصميم البحثي – بناء وادوات جمع البيانات – اختيار العينة – كتابة المقترح البحثي – جمع البيانات – تحليل وعرض البيانات – كتابة التقرير البحثي. # 5) المناقشات فى الادارة المستدامة للأراضي [2] المناقشات فى الادارة المستدامة للأراضي [2] ECH يعادل 1 ساعة معتمدة (ECH) يعادل 1 ساعة معتمدة (ECH) مناقشة موضوعات متعلقة بالادارة المستدامة للأراضي. بحث الرسالة، ويقتضاه يتم اعداد الرسالة العلمية للمناقشة. ## 6) التدريب الميدانى (ECH معتمدة عملى +12 ساعة أنشطة = 12 ساعات اوروبية ECTS 4 ساعة معتمدة (-) ساعة نظرى + 8 ساعة عملى +12 ساعة أنشطة = 12 تدريب ميدانى خلال فصل الصيف فى احد الشركات الزراعية الخاصة او المزارع الخاصة على نظم الادارة المستدامة للأراضي. # 7) بحث رسالة الماجستير في الادارة المستدامة للأراضي (ECH تعادل 8 ساعة معتمدة ECTS) تعادل 8 ساعة معتمدة (-) ساعة نظرى + 16 ساعة عملى + 34 ساعة أنشطة = 30 ساعات اوروبية ثانياً: المجالات التخصصية الإختيارية: مجال تخطيط وتقييم استخدام الارض تخطيط استعمالات الارض للتنمية المستدامة ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية = 2 يعادل 2 ساعة معتمدة = 1) طبيعة ومدى تخطيط استعمالات الارض – نظرة شاملة على عملية التخطيط – خطوات تنفيذ تخطيط استعمالات الارض – اهداف التنمية المستدامة – دلائل التنمية المستدامة – دارسات حالة متنوعة. ### تقييم الاراضي متقدم ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة = 1 اهداف وانواع تقييم الارضى – صفات وجودة الارض – طرق تقييم القدرة الانتاجية – طرق حساب صلاحية الارض لزراعة المحاصيل المختلفة – نماذج الحاسب الالى المستخدمة فى تقييم الارض – تقييم الاراضى لمختلف النظم البيئية الزراعية (اراضى مروية – اراضى الزراعة الجافة – اراضى الزراعة المطرية – اراضى المراعى) – استخدام نظم المعلومات الجغرافية والاستشعار عن بعد فى تقييم ورسم خرائط الاراضى. ### تغير المناخ والامن الغذائي ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة 1 مقدمة للمناخ – تاريخ مناخ الارض – اسباب تغير المناخ – نماذج دورة المناخ العالمية وكيفية التنبؤ – استجابة المناخ للمتغيرات البشرية – تاثير تغير المناخ على الزراعة – محددات الزراعة والغذاء من وجهة نظر تغير المناخ – تحديات النظم انتاج الغذاء – الوقود الحيوى - المحاصيل المعدلة وراثيا – تقليل مخاطر الامن الغذائي الناتجة من تغير المناخ. ### نمذجة تغيير استعمالات الاراضى ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية = 7 يعادل 2 ساعة معتمدة = 7 نظرة عامة – نظم تقسيم استخدامات الاراضى والغطاء الارضى – طرق جمع البيانات – طرق تحليل البيانات – المتعددة لتغير استخدام الارض والغطاء الارضى – نماذج وافتراضات تغير استخدام الارض – الدلائل الطيفية العمرانية – نماذج استخدام الارض وكيفية اختيار المناسب منها – نمذجة اساتخدام الارض – التوقعات المستقبلية لاستخدام الارض – حالات دراسة متنوعة. ### سياسات وتشريعات استخدام الارض #### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة = 1 مقدمة عن السياسات الزراعية – استراتيجية مصر للتنمية المستدامة حتى عام 2030 – استراتيجية مصر للتنمية الزراعية المستدامة حتى عام 2030 – قانون البيئة رقم 4 لسنة 1994 – استراتيجية مصر لاستصلاح الاراضى – استراتيجية مصر لادارة الموارد المائية – الاصلاح الزراعى في مصر – استخدام المبيدات وقوانين تنظيمه – قوانين الزراعة والمشاتل لمختلف المحاصيل - حالات دراسة متنوعة. ### 2) مجال الادارة البيئية للأراضي والمياة تلوث ومعالجة الاراضى والمياه متقدم ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة $\frac{1}{1}$ الانواع الرئيسة لملوثات التربة – العناصر الثقيلة في النظام الارضى – ميكانيكيات التلوث والتفاعل بين الارض والمادة الملوثة – العمليات الطبيعية – تغير الملوثات وتحولها وبدء التحولات الكيميائية في التربة – مراقبة تلوث التربة – تخطيط ةفهم معلجة التربة – مراجعة نظم الماء الجوفي – مفهوم جودة الماء الجوفي – الملوثات في بيئة الماء الجوفي – تقييم تعرض الماء الجوفي للتلوث باستخدام النماذج ونظم المعلومات الجغرافية – تقييم مخاطر تلوث الماء الجوفي – معالجة تلوث الماء الجوفي باستخدام الطرق المباشرة والغير مباشرة – عروض تقديمية للطلاب. ### تحليل النظم في ادارة المياه ### (ECH معتمدة ECTS يعادل 2 ساعة عملى ECTS ساعة أنشطة ECTS ساعات اوروبية مقدمة لادارة الموارد المائية - نظرة عامة لمشاكل ادارة الموارد المائية السطحية والجوفية - الامطار والورافد المائية - الماء التخيلي والماء الحلو - الانشاءات الهديرولوجية - تحليل النظم التطبيقي - طرق ادارة الموارد المائية (نمذجة ، التحسين ، التحليل متعدد الاهداف) - ادارة الموارد المائية تحت ظروف عدم اليقين (نماذج عم اليقين + الموارد المائية التنمية المستدامة + تنفيذ ادارة الموارد المائية للتنمية المستدامة + تنفيذ ادارة الموارد المائية للتنمية المستدامة + تنفيذ ادارة الموارد المائية باستخدام النمذجة والتحسين والاهداف المتعددة – حالة دراسة 1: حصاد مياه الامطار في الساحل الشمالي – حالة دراسة 2: ادارة الموارد المائية في دلتا النيل – مناقشة مفتوحة. ### الاعتبارات الاقتصادية والاجتماعية في ادارة الموارد المائية ECTS يعادل 2 ساعة معتمدة ECTS ساعة معتمدة ECTS عادل 2 ساعة معتمدة ECTS عادل 2 ساعة أنشطة ECTS عادل 2 ساعة معتمدة ECTS عادل 2 ساعة معتمدة ECTS مقدمة الاقتصاديات وقوانين الموارد المائية – مراجعة اساسيات الاقتصاد الجزئى المطبقة على الموارد المائية – مشاكل جودة المياه – تسعير المياه ومعدلات الاستهلاك المنزلى – الزراعة والمياه – عدم اليقين والمخاطر في عرض وطلب الموراد المائية – الماء الجوفى – استخدام المياه: الاستخدام البيئى والترفيهى – الفياضانات والجفاف ودور السدود – مشاكل المياه لى الدول النامية – ملخص - مقترحات العمل المستقبلي. ### الادارة المستدامة لخصوبة التربة ECTS الادارة المستدامة لخصوبة التربة ECTS ساعة أنشطة ECTS ساعة أنشطة ECTS ساعة أنشطة ECTS ساعة أنشطة أنشطة ECTS ساعة معتمدة ECTS أنشطة أنش مقدمة لخصوبة التربة – العناصر المغذية الاساسية – علاقات النبات والارض والعنصر المغذى – الطرق التشخيصية لمعلجة مشاكل الخصوبة (تقييم خصوبة التربة) – رحلة حقلية لجمع عينات الارض والنبات – توصيات التسميد المبنية على اسس علمية - المدخلات الزراعية المتقدمة والبسيطة – الادارة المتكاملة للمغذيات وافضل الممارسات الادارية الزراعية – التغذية المعدنية وعلاقتها بصحة الانسان والمخاطر البيئية – نمذجة استجابة المحصول لاضافة العناصر المغذية – ادوات الحاسب الالى المستخدمة في تشخيص خصوبة التربة. ### نظم الزراعة البديلة ### (ECH مناعة نظرى +2 ساعة عملى +7 ساعة أنشطة =6 ساعات اوروبية +2 يعادل +3 ساعة معتمدة +3 مفهوم ونشاة وتطور الزراعة في العالم – انماط واسس الزراعة التقليدية – تطوير نظم زراعية مستدامة – الزراعة التقليدية مقابل الزراعة المحمية – الزراعة العضوية – الزراعة الديناميكية الحيوية – الزراعة الملحية العضوية – نظم زراعة اسطح المنازل -نظم الزراعة في المدن الزراعة المعمرة – الزراعة الدقيقة – الزراعة الذكية مناخيًا – الصفات الكيميائية والفيزيائية والحيوية للارض – نظم الادارة للزراعة المستدامة – ادارة المياه والتسميد للتكثيف الزراعي. # 3) مجال نمذجة النظم المزرعية فى ادارة الاراضى نمذجة النظم النباتية فى ادارة الاراضى نمذجة النظم النباتية فى ادارة الاراضى (1 ساعة نظرى + 2 ساعة عملى + 7 ساعة أنشطة= 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة (1 ساعة نظرى + 2 ساعة عملى + 7 ساعة أنشطة= 6 ساعات اوروبية كلاحة المعتمدة عملى + 7 ساعة أنشطة المعتمدة عملى + 7 ساعة أنشطة المعتمدة وروبية كلاحة المعتمدة ال مقدمة لنمو وتطور النبات – العوامل المتحكمة في نمو النبات: المناخ – العوامل المتحكمة في نمو النبات: التربة – الاجهلد الحيوى وغير الحيوى – اسس وطرق وتغير النمذجة الرياضية – تقريب النموذج وتحقيقه وتصحيحه – انواع المعادلات المستخدمة في النماذج – اتخاذ القرار – تقسيم النماذج الرياضية والحلول العددية – نمذجة نمو النبات – التمثيل الضوئي وامتصاص الكربون – نمو ونشاط الجذور وعلاقات الارض – التربة - النبات – جهد نمو النبات – مفاهيم نمذجة ديناميكيات النظم – أمثلة لانواع نظم نمذجة النبات – تطبيق نمذجة النبات على انتاج المحاصيل. ### نمذجة النظم الحيوانية في ادارة الاراضي ### (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة ECTS مقدمه في نظم الانتاج الحيواني – مقدمة في نظم الانتاج النباتي – نظم الانتاج الزراعي مقابل نمذجة النظم الزراعية – احتياجات بناء نظام النمذجة (النموذج المتكامل – النموذج العضوى – النموذج الاقتصادي – النموذج الانتاجي) – امثلة على نمذجة النظم المتكاملة – معايير تقييم النماذج المتكاملة – مكونات مصفوفة الاطار المنطقي – تقييم المخاطر – كود التتبع والتوثيق. #### المكافحة المتكاملة للافات (1 ساعة نظرى + 2 ساعة عملى + 7 ساعة أنشطة= 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة (ECH تاريخ المكافحة المتكاملة للافات والتعريفات المصاحبة – العلاقات بين الكائنات الممرضة والنبات والتفاعل مع البيئة - مقاومة النبات العائل – الدورة الزراعية والممارسات الزراعية – اسس ادارة الحشائش و الحشرات والامراض والنيماتودا – مصير المبيدات البيئي – ادارة الافات في الزراعة العضوية – استخدام نماذج محصولية لتوضيح اسس المكافحة المتكاملة للافات - امثلة على برامج الادارة الكيبرة – الحشائش ومحاصيل المشاتل – الحيوانات وافات المراعي (الرعي و اماكن التغذية)- المكافحة المتكاملة للافات في الحضر (حشرات وقوارض) – تداول الخضر والفاكهة والمحاصيل بعد الحصاد وادارة الإمراض – استشارات وارشادات. ### الاقتصاد الزراعي التطبيقي (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة= 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة (ECH) مقدمة — سلوك المستهلك والطلب — اتخاذ القرار بواسطة المنتج: مدخلات احادية المتغير ومدخلات ثنائية المتغير واختيار الشركة — تكاليف الانتاج والعرض وتحديد السعر - تكاليف الانتاج والعرض وتحديد السعر تحت ظروف عدم اليقين — التنافس والسيادة في الاسواق — التنافس المنقوص ودور الحكومات وضبط الاسواق المرتبطة بالأراضي — الموارد الطبيعية وتحليل الرفاهية. ### ادارة المخلفات الزراعية متقدم (ECH يعادل 2 ساعة عملى + 7 ساعة أنشطة = 6 ساعات اوروبية ECTS يعادل 2 ساعة معتمدة $\frac{1}{1}$ المخلفات الزراعية والمياه والهواء والموارد الحيوانية – خواص المخلفات الزراعية – دور الاراضى فى ادارة المخلفات ادرة المخلفات – نظم ادارة المخلفات الزراعية للتربة – نظم ادارة المخلفات الزراعية – تخطيط نظام ادارة المخلفات الزراعية – الانتفاع بالمخلفات – معدات ادارة المخلفات. ### الباب الرابع: أحكام و ترتيبات إنتقالية خلال العام الأول والثاني من تطبيق / تفعيل درجة الماجستير يُراعي تطبيق الاحكام الإنتقالية التالية: - 1. يقوم الطالب
بالتسجيل لدرجة الماجستير في الادارة المستدامة للأراضي في واحدة من الاربع جامعات المشاركة في المشروع (القاهرة الاسكندرية الزقازرق دمنهور). - 2. يتم تدريس مقررات درجة الماجستير الإجبارية في السنة الاولى (الفصلين الدراسين الأول والثاني) في نقطتي تجمع هما جامعة القاهرة (لطلاب القاهرة والزقازيق) وجامعة الاسكندرية (لطلاب الاسكندرية ودمنهور). - 3. يقوم الطالب بسداد رسوم أو مصروفات الدراسة في الجامعة المسجل بها ومصروفات الساعات المعتمدة للمقررات الدراسية في الكلية المضيفة بأحد نقطتي التجمع التي سوف يدرس بها هذه المقررات وذلك طبقا لجدول توزيع المقررات على الفصول الدراسية (جدول 4). - 4. يتم اعتماد المقررات الدراسية الاجبارية التي اجتازها الطالب خارج جامعته بأحد نقطتي التجمع وتضمينها في سجله الدراسي طبقا لجدول مقارنة أكواد المقررات الدراسية (جدول 1). - يقوم الطالب بدراسة مقررات التخصص الذي اختاره وإجراء بحث رسالة الماجستير تحت اشراف المشرف المباشر بالجامعة التي قام بالتسجيل فيها. ويجوز الإلتزام بتطبيقها لمدد أخرى في حالة الرغبة في ذلك، وتبعًا لما يتم الاتفاق عليه بين كل من كليتي كل نقطة تجمع (الاسكندرية – دمنهور) أو (القاهرة – الزقازيق). ### الملاحق Appendices # ملحق (1): جدول (أ): مدى استيفاء البرنامج للمعايير الأكاديمية القياسية القومية (NARS) # ومدي اتساق المخرجات التعليمية المستهدفة من البرنامج مع المقررات الدراسية | التي تحقق النتائج المستهدفة | المفررات الدراسية والأنشطة
العلمية الأساسية والإجبارية
التي تحقق النتائج المستهدفة
للبرنامج | المخرجات التعليمية
المستهدفة للبرنامج التي
تحقق المعايير القياسية
القومية | المعايير الأكاديمية القياسية
القومية (NARS) | |---|--|--|---| | | : | جب أن يكون الخريج قادرا على | أولاً: المعرفة والفهم:
باستكمال دراسة البرنامج ي | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الارض الارض تقييم اراضى منقدم المستدامة المستدامة المستدامة الدارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم تغير المناخ والامن الغذائى تلوث ومعالجة الاراضى والمياه تقدم | مناقشات في الادارة
المستدامة للأراضي
الرسالة العلمية | بإدارة وتخطيط الأراضي | 1. النظريات
والأساسيات المتعلقة
بمجال التعلم وكذا
المجالات ذات العلاقة | | الادارة (المكافحة) المتكاملة للافات
الاقتصاد الزراعي التطبيقي
تغير المناخ والامن الغذائي
تلوث ومعالجة الاراضى والمياه
متقدم | والتحليل المكانى • اقتصاديات تدهو | والظواهر العلمية لمجالات العلوم الأخرى (إحصاء اقتصاد) وثيقة الصلة بالإدارة المستدامة للأراضي | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الارض الادارة (المكافحة) المتكاملة للافات الاقتصاد الزراعى التطبيقى تقييم اراضى منقدم تغير المناخ والامن الغذائى تلوث ومعالجة الاراضى والمياه | النظام البيئي الزراعي التنوع الحيوى وخدمات النظام البيئي مناقشات في الادارة المستدامة للأراضي | أ3- يتعرف علي الجوانب
السلبية والايجابية
لممارسة المهنة في
الحفاظ على البيئة | 2. التأثير المتبادل بين الممارسة المهنية وانعكاسها على البيئة | |---|--|---|---| | الادارة (المكافحة) المتكاملة للافات تقييم اراضى منقدم تلوث ومعالجة الاراضى والمياه تخطيط استخدامات الااضى للتنمية المستدامة الادارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم | مناقشات في الادارة المستدامة للأراضي الرسالة العلمية | أ4- يُدرك أهمية
الاستخدام الأمن للمبيدات
واضافاتها | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة الارض نمذجة النظام الحيواني في ادارة الارض الادارة (المكافحة) المتكاملة للافات تقييم اراضي منقدم تغير المناخ والامن الغذائي تلوث ومعالجة الاراضي والمياه | التنوع الحيوى وخدمات النظام البيئي نظم المعلومات الجغرافية والتحليل المكاني تدهور الاراضي متقدم | أ5- يُحدد اجراءات
السلامة المهنية للعمل في
مجالات الإدارة المستدامة
للأراضي | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة نمذجة النظام الحيواني في ادارة الارض | تدهور الاراضى متقدم نظم المعلومات الجغرافية تحليل طيفى متقدم لغة انجليزية للباحثين وكتابة المشروعات طرق البحث والتواصل العلمى مناقشات فى الادارة الرسالة العلمية | أ6- يُعد موضوعات
علمية حديثة في أحد
مجالات الإدارة المستدامة
للأراضي | 3. التطورات العلمية في مجال التخصص | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الارض الارض تخطيط استخدامات الااضى للتنمية المستدامة مدخل النظم لادارة المياه الادارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم تغييم اراضى منقدم تغيير المناخ والامن الغذائى تلوث ومعالجة الاراضى والمياه متقدم | نظم المعلومات الجغرافية والتحليل المكانى تحليل طيفى متقدم طرق البحث والتواصل تدريب ميدانى مناقشات فى الادارة المستدامة للأراضي الرسالة العلمية | أ7- يتعرف علي التقنيات الحديثة المتبعة في نمذجة انظمة الإنتاج الزراعي المختلفة | | |--|---|---|---| | الادارة (المكافحة) المتكاملة للافات الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية سياسات وتشريعات استخدامات الاراضى | مناقشات في الادارة
المستدامة للأراضي الرسالة العلمية | أ8- يُلسم بالمبدد والتشريعات القانونية والأخلاقية الخاصة بممارسة المهنة في مجال الإدارة المستدامة للأراضي | 4. المبادئ الأخلاقية
والقانونية للممارسة
المهنية في مجال
التخصيص | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة الارض نمذجة النظام الحيواني في ادارة الارض الادارة (المكافحة) المتكاملة للافات الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية سياسات وتشريعات استخدامات الاراضي | النظام البيئي الزراعي التنوع الحيوي وخدمات تدهور الاراضي متقدم طرق البحث والتواصل تدريب ميداني مناقشات في الادارة المستدامة للأراضي | أ9- يتعرف علي معايير ومواصفات جودة الأداء في مجال الإدارة المستدامة للأراضي | 5- مبادئ وأساسيات
الجودة في الممارسة
المهنية في مجال
التخصيص | | الادارة (المكافحة) المتكاملة للافات الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية سياسات وتشريعات استخدامات الاراضى | طرق البحث و التواصل العلمي مناقشات في الادارة المستدامة للأراضي الرسالة العلمية | أ10- يُلم بمبادئ
وأخلاقيات البحث العلمي
في مجال الإدارة
المستدامة للأراضي | 6- اساسيات وأخلاقيات
البحث العلمي | | ثانيا: المهارات الذهنية:
بانتهاء البرنامج يجب أن يكون الخريج قادرا علي: | | | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة | التنوع الحيوى وخدمات النظام البيئى تدهور الاراضى متقدم نظم المعلومات الجغرافية | ب1- يُناقش البيانات
والمعلومات المتعلقة
بمشاكل الإدارة المستدامة
للأراضي | 1- تحليل وتقييم
المعلومات في مجال
التخصص والقياس عليها
لحل المشاكل | | الارض | والتحليل المكاني | | | |---|--|--|----------------------| | ۱۵رص تقییم اراضی منقدم | و التحليل المحالي
• تحليل طيفي متقدم | | | | • تغير المناخ والامن الغذائي | • اقتصاديات تدهو | | | | تلوث ومعالجة الاراضى والمياه | الاراضى | | | | متقدم | • التحليل الاحصائي | | | | | الزراعي | | | | | • تدریب میدانی | -1 t ti | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة | النظام البيئي الزراعي التنوع الحيوي وخدمات | ب2- يُقيم المعلومات
والظواهر الخاصية | | | الارض الارض المجاني على الدارة | النظام البيئي |
والموامر المساكل الإدارة | | | نمذجة النظام الحيواني في ادارة | • تدهور الأراضى متقدم | المستدامة لللأراضي | | | الارض | • نظم المعلومات الجغر افية | | | | • تقییم اراضی منقدم | والتحليل المكانى | | | | تغیر المناخ والامن الغذائی تلوث ومعالجة الاراضی والمیاه | تحلیل طیفی متقدم اقتصادیات تدهو | | | | • تلوت و معالجه ۱۱ راضتی و المیاه
متقدم | الاراضي الأمو | | | | , | • التحليل الاحصائي | | | | | الزراعي | | | | | الرسالة العلمية | | | | الادارة (المكافحة) المتكاملة للافات | • التنوع الحيوى وخدمات | , | 2- حـــل المشـــاكل | | الجوانب الاجتماعية والاقتصادية | النظام البيئي | المتعلقة بمعوقات الإدارة | | | في إدارة الموارد المائية
• تقييم اراضى منقدم | تدهور الاراضى متقدم نظم المعلومات الجغرافية | المستدامة للأراضي تحت
الظروف الطبيعية | بعض المعطيات | | تغييم الراحتي متعدم تغير المناخ والامن الغذائي | والتحليل المكانى | والمعاكسة | | | تلوث ومعالجة الاراضى والمياه | • تحلیل طیفی متقدم | | | | متقدم | • طرق البحث والتواصل | | | | | العلمي | | | | | تدریب میدانی مناقشات فی الادار ة | | | | | ■ منافسات في الإدارة المستدامة للأراضي | | | | | الرسالة العلمية | | | | • نمذجة تغيرات معاملات الاراضى | • تدهور الاراضى متقدم | ب4- يضع حلول | | | • نمذجة النظام النباتي في ادارة | • طرق البحث والتواصل | للمشاكل في ضوء | | | الارض | العلمي | البيانات والمعلومات التي | | | • نمذجة النظام الحيواني في ادارة
الأحيد | • تدریب میدانی | تم جمعها | | | الأرض | مناقشات في الادارة المستدامة للأراضي | | | | | الرسالة العلمية | | | | نمذجة تغيرات معاملات الاراضي | • النظام البيئي الزراعي | ب5- يربط المعارف | 3- الربط بين المعارف | | نمذجة النظام النباتي في ادارة | نظم المعلومات الجغرافية | والمفاهيم الخاصة بعلوم | المختلفة لحل المشاكل | | الارض | والتحليل المكانى | الإدارة المستدامة | المهنية | | نمذجة النظام الحيواني في ادارة | • طرق البحث والتواصل | اللأراضي مع العلوم | | | | | الأخرى لحل مشاكل | | | الأرض • نمذجة تغيرات معاملات الاراضى | العلمى • تدريب ميدانى • مناقشات فى الادارة • المستدامة للأراضي • الرسالة العلمية | الإنتاج المختلفة
ب6- يُصـم برنـامج أو | | |--|---|--|----------------------| | نمذجة النظام النباتي في ادارة الارض نمذجة النظام الحيواني في ادارة الارض الاقتصاد الزراعي التطبيقي | • الرسالة العلمية | أنموذج لتعظُ يم انتاجية
الأراضي | | | الاقتصاد الزراعي التطبيقي | اقتصادیات تدهو الاراضی النراعی لغة انجلیزیة للباحثین وکتابة المشروعات البحثیة طرق البحث والتواصل العلمی تدریب میدانی مناقشات فی الادارة الرسالة العلمیة | ب7- يصف الأساليب العلمية الطرق الاحصائية المناسبة في تنفيذ المشروع البحثي | أو كتابة دراسة علمية | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة نمذجة النظام الحيواني في ادارة الارض الاقتصاد الزراعي التطبيقي | اقتصادیات تدهو الاراضی النحلیل الاحصائی لغة انجلیزیة للباحثین وکتابة المشروعات البحثیة طرق البحث والتواصل العامی تدریب میدانی الرسالة العامیة | ب8- يُصــم مشــروع
بحثي يتناول حل مشكلة
متعلقــة بمجـال الإدارة
المستدامة للأراضي | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الارض تخطيط استخدامات الااضى للتنمية المستدامة مدخل النظم لادارة المياه الادارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية سياسات وتشريعات استخدامات الاراضى | النظام البيئي الزراعي النتوع الحيوى وخدمات النظام البيئي طرق البحث والتواصل العلمي تدريب ميداني مناقشات في الإدارة المستدامة للأراضي | الصلة بعمليات الانتاج الزراعي (النقل – التسداول – التصنيع – التخزين ألخ) | مجال التخصص | |--|--|--|--| | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة نمذجة النظام الحيواني في ادارة الارض سياسات وتشريعات استخدامات الاراضي | طرق البحث والتواصل تدریب میدانی مناقشات فی الادارة المستدامة للأراضي | ب10- يُخط ط لتلافي المخاطر باستخدام وسائل وطرق الأمن والسلامة المناسبة | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الارض الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية سياسات وتشريعات استخدامات الاراضى تخطيط استخدامات الااضى للتنمية المستدامة مدخل النظم لادارة المياه الادارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم | تدهور الاراضي متقدم اقتصاديات تدهو التحليل الاحصائي طرق البحث والتواصل العلمي تدريب ميداني مناقشات في الادارة المستدامة للأراضي الرسالة العلمية | ب11- يتخذ القرار
المناسب للتعامل مع
المشاكل المتعلقة بالإدارة
المستدامة للأراضي | 6- اتخاذ القرارات المهنية في سياقات مهنية متنوعة | | | | كون الخريج قادرا علي أن: | ثالثا: المهارات المهنية:
بانتهاء البرنامج يجب أن يد | | تقییم اراضی منقدم تلوث ومعالجة الاراضی والمیاه متقدم | تدهور الاراضى متقدم نظم المعلومات الجغرافية والتحليل المكانى تحليل طيفى متقدم تدريب ميدانى الرسالة العلمية | باستخدام الأجهزة
المناسبة | 1- اتقان المهارات المهنية الأساسية والحديثة في مجال التخصيص | |--|--|---|---| | الاقتصاد الزراعی التطبیقی تقییم اراضی منقدم تلوث ومعالجة الاراضی والمیاه متقدم | تدهور الاراضي متقدم اقتصادیات تدهو النراضی الزراعی طرق البحث والتواصل تدریب میدانی مناقشات فی الادارة المستدامة للأراضی الرسالة العلمی | ج2- يُقيم نتائج التحليل
ويستخدمها لتعظيم
الإستفادة في اطار الإدارة
المستدامة للأراضي | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة الارض نمذجة النظام الحيواني في ادارة الارض تخطيط استخدامات الااضي للتنمية المستدامة مدخل النظم لادارة المياه الادارة المستدامة لخصوبة التربة نظم الزراعة البديلة ادارة المخلفات الزراعية متقدم | النظام البيئي الزراعي تدريب ميداني الرسالة العلمية | ج3- يُطبق برامج الإدارة
المناسبة لظروف الإنتاج
المختلفة | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة نمذجة النظام الحيواني في ادارة الارض تقييم اراضي منقدم تغير المناخ والامن الغذائي تلوث ومعالجة الاراضي والمياه | نظم المعلومات الجغرافية والتحليل المكانى تحليل طيفى متقدم الرسالة العلمية | ج4- يستخدم التقنيات
الحديثة في مجال الإدارة
المستدامة للأراضي | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة
الارض نمذجة النظام الحيواني في ادارة
الارض | تدهور الاراضى متقدم نظم المعلومات الجغرافية والتحليل المكانى تحليل طيفى متقدم اقتصاديات ندهو | ج5- يُعد التقارير العلمية الفنية المتخصصة | 2- كتابة وتقييم التقارير
المهنية | | - | | | · | |--|--|--|-----------------------| | تقییم اراضی منقدم | الاراضى | | | | تغير المناخ والامن الغذائي | • التحليل الاحصائي | | | | تلوث ومعالجة الاراضى
والمياه | الزراعي | | | | متقدم | تدریب میدانی | | | | , | مناقشات في الادارة | | | | | المستدامة للأراضي | | | | | الرسالة العلمية | | | | • نمذجة تغيرات معاملات الاراضى | • لغة انجليزية للباحثين | ج6- یکت ب مقترح | | | | • تعه الجليرية للبحليل
وكتابة المشروعات | المشروع بحثى في مجال | | | نمذجة النظام النباتي في ادارة ۱۷۲ من | وحدبه المسروعات
البحثية | التخصص | | | الأرض
: تانيا الرائية | , , | التحصيص | | | نمذجة النظام الحيواني في ادارة | الرسالة العلمية | | | | الأرض | | | | | نمذجة تغيرات معاملات الاراضى | النظام البيئي الزراعي | ج7- يُطبـــق أســــاليب | | | نمذجة النظام النباتي في ادارة | | الانتاج المثلي في نطاق | والأدوات المستخدمة في | | الارض | | الإدارة المستدامة | مجال التخصص | | نمذجة النظام الحيواني في ادارة | | للأراضي | | | الارض | | | | | • تخطيط استخدامات الااضى للتنمية | | | | | المستدامة | | | | | مدخل النظم لادارة المياه | | | | | الادارة المستدامة لخصوبة التربة | | | | | نظم الزراعة البديلة | | | | | ادارة المخلفات الزراعية متقدم | | | | | , | و التناع الماء والماء | و و در تاند اس | | | • نمذجة تغيرات معاملات الاراضى | التنوع الحيوى وخدمات النظام البيئي | ج8- يستخدم مستلز مات
الانتاج المناسبة في مجال | | | نمذجة النظام النباتي في ادارة | النظام البيتي | الإنتاج المناسبة في مجال الإدارة المستدامة | | | الأرض | | · · | | | • نمذجة النظام الحيواني في ادارة
الاحت | | للأراضي | | | الارض | | | | | • تخطيط استخدامات الااضى للتنمية الله المالية المالية المالية المالية المالية المالية المالية المالية المالية ا | | | | | المستدامة | | | | | • مدخل النظم لادارة المياه | | | | | الادارة المستدامة لخصوبة التربة | | | | | • نظم الزراعة البديلة | | | | | ادارة المخلفات الزراعية متقدم | | | | | تقییم اراضی منقدم | | | | | تغیر المناخ والامن الغذائی | | | | | تلوث ومعالجة الاراضى والمياه | | | | | متقدم | | | | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة الارض نمذجة النظام الحيوانى فى ادارة الأرض | اقتصادیات تدهو
الاراضی التحلیل الاحصائی الزراعی | ج9- يستخدم الطرق
والحزم الاحصائية بكفاءة
ويختار المناسب منها
لمعالجة وتحليل وعرض
البيانات وتفسير النتائج | | |--|--|--|---| | | | | رابعا: المهارات العامة والم
بانتهاء البرنامج يجب أن يذ | | يمكن تغطيتها من السيمنارات الموجودة بكل المقررات الدراسية | طرق البحث والتواصل العلمي مناقشات في الادارة المستدامة للأراضي | د1- يُشارك مع الأخرين
في المناقشات العلمية
شفاهة وكتابة | 1- التواصل الفعال
بأنواعه المختلفة | | يمكن تغطيتها من السيمنارات
الموجودة بكل المقررات الدراسية | لغة انجليزية للباحثين وكتابة المشروعات طرق البحث والتواصل العلمي مناقشات في الإدارة المستدامة للأراضي | د2- يُقدد عدروض الكترونية مرئية باللغتين العربية والانجليزية | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة الارض نمذجة النظام الحيواني في ادارة الارض سياسات وتشريعات استخدامات الاراضي الاقتصاد الزراعي التطبيقي الجوانب الاجتماعية والاقتصادية في إدارة الموارد المائية | نظم المعلومات الجغرافية والتحليل المكانى اقتصاديات تدهو الاراضى التحليل الاحصائى الزراعى الرسالة العلمية | تكنولوجيا المعلومات | الممارسة المهنية | | نمذجة تغيرات معاملات الاراضى نمذجة النظام النباتى فى ادارة نمذجة النظام الحيوانى فى ادارة الارض الارض الاقتصاد الزراعى التطبيقى | اقتصادیات تدهو الاراضی التحلیل الاحصائی الزراعی الرسالة العلمیة | د4- يُحلل البيانات
باستخدام بر امج الحاسب
الألي المناسبة | | | | لغة انجليزية للباحثين وكتابة المشروعات البحثية طرق البحث والتواصل العلمى | د5- يُشارك في المشروعات البحثية والندوات والمؤتمرات وورش العمل بهدف تنمية مهاراتك الشخصية والأكاديمية والمهنية | 3- التقييم الذاتي وتحديد
الاحتياجات التعليمية
الشخصية | | | تدریب میدانی الرسالة العلمیة | | | |--|--|--|---| | يمكن تغطيتها من السيمنارات
الموجودة بكل المقررات الدراسية | لغة انجليزية للباحثين وكتابة المشروعات البحثية طرق البحث والتواصل العلمي مناقشات في الادارة المستدامة للأراضي الرسالة العلمية | د6- يستخدام قواعد البحث الالكترونية بكفاءة للحصول على المعلومات المتعلقة بمجال تخصصه | 4- استخدام المصادر المختلفة للحصول على المعلومات والمعارف | | يمكن تغطيتها من السيمنارات
الموجودة بكل المقررات الدراسية | طرق البحث والتواصل العلمي تدريب ميداني مناقشات في الادارة المستدامة للأراضي | د7- يُشارك في تقييم
زملائة | | | نمذجة تغيرات معاملات الاراضي نمذجة النظام النباتي في ادارة نمذجة النظام الحيواني في ادارة الأرض | لغة انجليزية للباحثين وكتابة المشروعات البحثية طرق البحث والتواصل العلمي الرسالة العلمية | د8- يعمل بكفاءة ضمن فريق و يظهر مهارات قيادة فريق عمل بتحديد أهدداف ومسئوليات المشاركين لانجاز مهمة في مجال التخصص | 6- العمل في فريق وقيادة
فرق في سياقات مهنية
مختلفة | | يمكن تغطيتها من السيمنارات
الموجودة بكل المقررات الدراسية | لغة انجليزية للباحثين وكتابة المشروعات طرق البحث والتواصل العلمي مناقشات في الادارة المستدامة للأراضي | د9- يُدير الوقت أثناء
المناقشات العلمية بفاعلية
ويعمل تحت ضغط
لانجاز مهمة علمية | 7- ادارة الوقت بكفاءة | | يمكن تغطيتها من السيمنارات
الموجودة بكل المقررات الدراسية | نظم المعلومات الجغرافية والتحليل المكانى لغة انجليزية للباحثين وكتابة المشروعات البحثية طرق البحث والتواصل العلمى مناقشات فى الادارة المستدامة للأراضي الرسالة العلمية | د 10- يستخدم مدى واسع من المصادر المعلوماتية بشكل فعال ومستمر (شبكة المعلومات- المكتبة-النشرات الفنية- الدوريات والكتب المرجعية) | 8- التعلم الذاتي والمستمر | ملحق (2): توصيف المقررات الدراسية (أكواد المقررات بالجامعات المشاركة موضحة بجدول رقم (1) صفحة (8) | Mandatory Mo | odule: Sustainable | e agro-ecosyster | n management | |--------------|--------------------|------------------|--------------| | | landatory Course | | | | | | | | | | | | | | | | | | University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Sustainable Agroecosystem Management Department offering the program: Soil and Water Sciences **Department offering the course:** Environmental Science (Faculty of Science) Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Agroecosystems Code: SLM 14730 **Credit Hours/ECTS: 2/6** Lecture: 2 Tutorial/Practical: Total: 2 ## **B- Professional Information** ### 1 - Overall aims of course Agroecosystems that we have inherited and as we perceive them today are actually marvels created on earth's surface through human endeavor over a few millenniums. We have understood and accrued a large body of knowledge about them. Yet, we have too many things to investigate and perhaps control to our own advantage, of course, without deteriorating natural resources and our environment. Today, an entire posse of agroecosystems on the globe feeds over 7 billion human species and innumerable farm animals. We have to strive to manage these agroecosystems to feed a larger populace in the future. This course aims at providing advanced information on: - **a.** The ingredients, nutrient dynamics, and factors that affect productivity and ecosystematic functions in different agroecosystems, - **b.** Agroecosystem Quality: Policy and Management Challenges - c. Policy and strategies for designing sustainable farming systems ### .2 - Intended learning outcomes of course (ILOs) - a- Knowledge and understanding: - a1- Identifying Ingredients of Agroecosystems - a2- Understanding Nutrient Dynamics of Agroecosystems - a3- Understand livestock system components - a4- Exploring the role of soil microorganisms in agroecosystems. #### b. Intellectual skills: - b1- Infers Factors Influences Nutrient Dynamics in Agroecosystems. - b2. Relates soil microorganisms and nutrient dynamics. - B3- Explore the difference between different trends in nutrient supply and soil fertility management practices in Agroecosystems. - b4- Classifying cropping systems - b5- Designs methods to control weeds in different cropping zones - c. Professional
and practical skills: - c1- Interpret data to draw conclusions about types of cropping systems and nutrient dynamics. - c2- Judges the Influence of irrigation systems on nutrient dynamic. - c3- Justifies policy and strategies for designing sustainable farming systems - c4-Verifies quality indicators of agroecosystems - d- General and transferable skills: - d1- Communication skills, covering both written and oral communication - d2- Prepare reports for evaluating influence of irrigation systems on nutrient dynamic - d3- Practice the acquired skills for problem-solving. - d4- Work effectively both in a team and independently. #### 3- Contents ### Topic Week 1: Ecosystems: concepts and definitions - Ecosystems and agroecosystems - Definition and Ingredients of Agroecosystems - Recognizing agroecosystems services Week 2: Nutrient Dynamics of Agroecosystems - Nutrient Inputs to Agroecosystems - Trends in Nutrient Supply and Soil Fertility Management Practices - Nutrient Supply Through Natural Factors - Nitrogen Supplied Through Chemical Fertilizers - Nitrogen Supply to a Legume Agroecosystem - Nitrogen Supplied Through Crop Residue and Green Manures Week 3: Factors Influences Nutrient Dynamics in Agroecosystems - Tillage and Soil Organic Carbon - Organic Mulches and Nutrient Dynamics Week 4: Soil Organic Matter - Crop Residue Recycling - Green Manures and Nutrient Dynamics in Agroecosystems - Organic Manures ## • Industrial By-Products ### Week 5: Weeds in Agroecosystems • Methods to Control Weeds in Different Cropping Zones ### Pest management - Chemical pest control - non-traditional pest control #### Week 6: Midterm Exam Week 7: Exploring the role of Soil Microorganisms in agroecosystems. - Biological Nitrogen Fixation - Mycorrhizas - Plant Growth Promoting Rhizobacteria - Azolla and Blue Green Algae ### Week 8: Site visit to the experimental farm ### Week 9: Animal husbandry system - Cattle, sheep/ goat systems management - Animal nutrition ### Week 10: Influence of Irrigation Systems - Precipitation Pattern - Methods of Irrigation Adopted in Various agroecosystems - Water Resource and Mode of Irrigation - Water Requirements of Crops - Irrigation And Cropping Zones in Different Continents. ### Week 11: Cropping Systems - Mono-cropping - Crop Rotations ,Inter-Cropping and Mixed Crops - Strip Cropping, Fallows and Cover Crops ### Week 12: Group Discussion Examples of agroecosystems::arid agroecosystems, wetlands, dry rangeland, aquatic ecosystems, and tree ecosystems. #### Week 13: Group Discussion Agroecosystem Quality: Policy and Management Challenges for New Technologies and Diversity - Challenges to agroecosystems management - Quality Indicators - Biodiversity of agroecosystems - Strategies for designing sustainable farming systems. ## 4- Teaching and learning methods - 4.1 Lectures - 4.2- Group Discussion & Field Trips - 4.3- Assignments & Reports ### 5- Student assessment methods - 5.1 Group discussion and oral exam to assess Communication skills and Working effectively both in a team and independently - 5.2- Written Exams to assess the understanding and scientific background - 5.3- Field visits report to assess the intellectual & professional skills #### Assessment schedule Assessment 1: Assignments – Week: 2-5 Assessment 2: Mid-term written exam – week: 6 Assessment 3: Reports discussion: 12-13 Assessment 4: Oral exam – Week: 14 Assessment 5: Final written exam – Week: 15 ### Weighing of assessments Mid-term examination: 10% Final-term examination: 40% Oral examination: 20% Assignments: 15% Reports: 15% Total = 100% ### **Additional Information (Assessment)** Report (15% of total mark) on a topic chosen by the student, but which is of relevance to the course and agreed in discussion with the teaching staff. Beside frontal lectures, work in small groups is intended. Groups will be field handled with various causes related to biodiversity themes. Case studies will be discussed during the course, using a multistakeholders processes approach. Results of field observations and analysis will be presented in the form of seminar papers. Visit to field sites will be also organized during the course #### 6- List of references ### 1- AGROECOSYSTEMS 1- KrishnaK. R. (2014) Soils, Climate, Crops, Nutrient Dynamics, and Productivity. Apple Academic Press, Toronto, New York. - 2- Vandermeer, J. H. (2011) The Ecology of Agroecosystems. Jones and Bartlett Publishers, LLC - 3- Collins, W. W. and Qualset, C. O. (1998) Biodiversity in Agroecosystems. Lewis. Poka Raton, New York. # 7- Facilities required for teaching and learning - 1. Computer - 2. Data Show - 3. White board and white board markers | Course coordinator: Pro | of. Fawzy Kis | k & Prof. | Manal | Fawzy | |-------------------------|---------------|-----------|-------|-------| |-------------------------|---------------|-----------|-------|-------| ## **Head of Department:** Date: / / | Mandatory Module: Sustainable agro-ecosystem management | |---| | Mandatory Course: Biodiversity and Ecosystem Services | | | | | | | | | University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: : Sustainable Agroecosystem Management **Department offering the program:** Soil and Water Sciences **Department offering the course:** Environmental Science (Faculty of Science) Academic year / Level: Master Date of specification approval: ## A- Basic Information **Title:** Biodiversity and Ecosystem services **Code:** SLM 14731 **Credit Hours / ECTS:** 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 ## **B-** Professional Information #### 1 – Overall aims of course Ecosystem services are the benefits humankind derives from the workings of the natural world. The delivery of ecosystem services depends in many cases on the maintenance of biodiversity. However, in many instances we do not well understand the mechanism by which biodiversity enhances the delivery of ecosystem services. One of the key insights from this course is to explore current understanding of the relationships between biodiversity, the structure and functioning of ecosystems, and the provision of ecosystem services. It aims specifically at providing advanced information on: - a- Giving an insight on ecosystem types, functions, components and services. - b- Providing comprehensive information about biodiversity and its critical importance to ecosystem functioning and human wellbeing. #### 2 – Intended learning outcomes of course (ILOs) a- Knowledge and understanding: On the completion of this course the student will be able to: - a.1 Identify biodiversity and major components of our global ecosystem - a.2 Define different components, functions and services of different ecosystems. - a.3- Understand the relationship between biodiversity and ecosystems services. - a.4- Recognize levels and role of biodiversity in ecosystem functioning - a.5- Summarize types and categories of ecosystems services. - a.6- Describe human impacts on the biodiversity and biodiversity hotspots - b- Intellectual skills: - b.1- Differentiate between different levels of biodiversity. - b.2- Evaluate the causes of biodiversity loss and human activities causing this loss - b.3- Explore how can we place value on ecosystem services. - b.4- Design Methods to control biodiversity loss. - b.5- Estimate sensitivity of different services to variation in biodiversity. - c- Professional and practical skills: - c.1- Interpret data to draw conclusions about management of ecosystem services - c.2- Criticize the on-going measures of dealing with biodiversity impoverishment - c.3- Justifies the link between biodiversity, ecosystem services and human wellbeing - c.4- Infer solutions to solve biodiversity problems and achieve sustainability - d- General and transferable skills: - d.1- Communication skills, covering both written and oral communication - d.2- Prepare reports for evaluating human impacts on biodiversity and ecosystem services. - d.3- Practice the acquired skills for problem-solving. - d.4- Work effectively both in a team and independently. #### 3- Contents #### **Topic** Week 1: Biodiversity and Ecosystems: - Theory & definitions - Role of biodiversity in ecosystem functioning - Terrestrial systems - Marine systems - Finding quantitative links between biodiversity and ecosystem services Week 2: The links between biodiversity, ecosystem functions and ecosystem services. Provisioning services Week 3: The links between biodiversity, ecosystem functions and ecosystem services. Regulating services Week 4: The links between biodiversity, ecosystem functions and ecosystem services - Supporting - Cultural services Week 5: Current pressures on biodiversity and responses - Direct & indirect causes of biodiversity loss - Biodiversity hot spots. #### Week 6: Midterm Exam Week 7: Sustaining biodiversity: species approach ### Biodiversity conventions - The Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES) - The RAMSAR Convention - Convention on Migratory Species (Bonn Convention) - Convention on Biological Diversity(CBD) ## Week 8: Site visit to protected area ## Week 9: Open discussion & brain storming - Judging the on-going measures of dealing with biodiversity impoverishment - Infer solutions to solve biodiversity problems and achieve sustainability ### Week 10: Management of ecosystem services - Ecosystem services and resilience - Resilience thinking in policy and practice ## Week 11: biodiversity, ecosystem services and human well-being ## Week 12: Reports discussion on: - Biodiversity futures for the 21st century. - Towards a strategy for reducing biodiversity loss ## Week 13: Reports discussion on: - Biodiversity Futures for the 21st Century. - Towards a Strategy for Reducing Biodiversity Loss #### 4- Teaching and learning methods - 4.1 Lectures - 4.2- Group Discussion & Field
Trips - 4.3- Assignments & Reports ### 5- Student assessment methods - 5.1 Group discussion and oral exam to assess Communication skills And Working effectively both in a team and independently - 5.2- Written Exams to assess the understanding and scientific background - 5.3- Field visits report to assess the intellectual & professional skills #### Assessment schedule Assessment 1: Assignments – Week: 5 Assessment 2: Mid-term written exam – week: 6 Assessment 3: Reports discussion: 12-13 Assessment 4: Oral exam – Week: 14 Assessment 5: Final written exam – Week: 15 ### Weighing of assessments Mid-term examination:15%Final-term examination:40%Oral examination:15%Reports, assignments and semester work:30%Total100% ### Additional Information (Assessment) Report (15% of total mark) on a topic chosen by the student, but which is of relevance to the course and agreed in discussion with the teaching staff. Beside frontal lectures, work in small groups is intended. Groups will be field handled with various causes related to biodiversity themes. Case studies will be discussed during the course, using a multistakeholders processes approach. Results of field observations and analysis will be presented in the form of seminar papers. With regard to selected topics of seminars additional lectures are provided by visiting academic staff or researchers. Visit to field sites will be also organized during the course ### 6- List of references - 1- Robert Kaufman: Global Biodiversity 1st ed; (2007) McGraw-Hill. - 2- Shahid Naeem, Daniel E. Bunker, Andy Hector, Michel Loreau& Charles Perrings: Biodiversity, Ecosystem Functioning, and Human Wellbeing; (2009) Oxford University Press. - 3- Pushpam Kumar: The Economics of Ecosystems and Biodiversity (TEEB) Ecological and Economic Foundations (2010) Earthscan, London and Washington. Periodicals, Web Sites, ..., etc. WWW. CBD. Org WWW. UNESCO/mab.org WWW. IUCN.org ## 7- Facilities required for teaching and learning Computer Data Show White board and white board markers **Course coordinator: Prof. Manal Fawzy** **Head of Department:** Date: / | Mandatory Module: Sustainable agro-ecosystem management | |---| | Mandatory Course: Advanced Land Degradation | | | | | | | | | University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Sustainable Agroecosystem Management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Advanced Land Degradation Code: SLM 14732 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information #### 1 – Overall aims of course The course is aimed to shed the light on the problem of land degradation, and determine the different types of land degradation and how to prevent, overcome and solve the problems associated with such degradation. ### 2 – Intended learning outcomes of course (ILOs) - a- Knowledge and understanding: - a1- Define land degradation and its causes and effects - a2- Describe and distinguish the different types of land degradation - a3- Identify different indicators used to quantify land degradation - a4- Identify the management practices used to overcome the different types of land degradation - a5- Explain how land degradation would impact conservation practices - b- Intellectual skills: - b1- Determine the different types of land degradation - b2- Detect causes and effects of land degradation - b3- Calculate the land degradation indicators - b4- Select the appropriate indicators for local, national, and regional scales - b5- Determine the proper management practices to overcome different land degradations - b6- Report the important conservation practices relevant to each type of land degradation - c- Professional and practical skills: - c1- Distinguish different types of land degradation - c2- Explain the harmful effects of land degradation - c3- Compare the different management practices to overcome land degradation - d- General and transferable skills: - d1- Use the modern technology in land degradation. - d2- Develop the team work concept in land degradation. - d3- Improve the creative thinking and communication skills in land degradation issues. - d4 Develop the holistic approach in land degradation studies. #### 3- Contents ### Topic - Week 1: Definitions: desertification, aridification, remediation, conservation, - Week 2: Global land resources Extent of land degradation Causes of land degradation - Week 3: Erosion: Erosion hazards Mechanism of erosion- - Week 4: Water Erosion- Methods of quantifying soil losses by water erosion - - Week 5: Conservation and management of water eroded soils by 1- crop - management 2 agriculture practices - Week 5: Wind Erosion Estimating soil loss by wind - Week 6: Desertification: causes of desertification Desert conservation and reclamation - Week 7-8: Land degradation due chemical deterioration - 1 Salt-affected soils: Characterization, hazard effects, managing and reclaiming - 2 Alkalinity: Causes characterization, hazard effects, managing and reclaiming - Week 9: Land degradation due physical deterioration: Soil compaction and - crusting: Causes of compaction- Effects of compaction- Management of soil - crusting and compaction - Week 10: Land degradation due biological deterioration: soil organic matter loss ## of microorganism Week 11: Soil and climatic change: EFFECTS OF GLOBAL WARMING ON SOILS - Plant growth and carbon sequestration in soils Week 12: Modern techniques for assessing land degradation ## 4- Teaching and learning methods - 4.1- Lectures - 4.2- Seminars - 4.3- Case studies and problems - 4.4- Internet search ### 5- Student assessment methods - 5.1 Quizzes - 5.2 Mid-term Exam - 5.3 Oral Examination - 5.4 Final-term theoretical Examination #### Assessment schedule | Assessment 1: Quizzes | Weeks: 3 - 10 | |-----------------------------|---------------| | Assessment 2: Mid-term Exam | Week: 8 | Assessment 3: Oral Examination Week: 12 Assessment 4: Final-term theoretical Examinatio Week: 13 ## Weighing of assessments | Mid-term examination | 10% | |------------------------|------| | Final-term examination | 70% | | Oral examination | 10% | | Quizzes | 10% | | Total | 100% | ## Any formative only assessments ### 6- List of references ## 6.1- Course notes Power point presentation ## 6.2- Essential books (text books) Lal, R., Blum, W.H., Valentine, C. and B.A. Stewart. (1998). Methods for assessment of soil degradation. CRC Press. New York. Fullen, M.A. and Catt, J.A. (2004). Soil Management: Problems and Solutions. Arnold Pub. #### 6.3- Recommended books Lal, R., Sobecki, T. M., Livari, T., and J. M. Kimble. 2004. Soil degradation in the United States: Extent, Severity, and Trends. Lewis Publishers. NY, London, Boca Raton. Pimentl, D. (Ed.) (1993). World Soil Erosion and Conservation. Cambridge Univ. Press. Hudson, N. (1971). Soil Conservation. B T Batsford Limited. R.P.C. Morgan, 2005, Soil Erosion and Conservation, 3rd edition. Blackwell Publishing Ltd. Oxford FAO 2015. Status of the World's Soil Resources, FAO. Liniger, H.P., R. Mekdaschi Studer, C. Hauert and M. Gurtner. 2011. Sustainable Land Management in Practice – Guidelines and Best Practices for Sub-Saharan Africa. TerrAfrica, World Overview of Conservation Approaches and Technologies (WOCAT) and Food and Agriculture Organization of the United Nations (FAO) Liniger, H.P. and W. Critchly. 2011. WOCAT 2007: where the land is greener. Casestudies and analysis of soil and water conservation initiatives worldwide. CTA, FAO, UNEP, CDE. #### 6.4- Periodicals, Web sites, ... etc Soil Sci. Soc. Amer. J. Geoderma J.Soil and Water Conservation J. Soil Sci. J. Env. Quality www. FAO.org GLASOD (Global Assessment of Soil Degradation) publications (ISRIC, Wageningen): http://www.isric.org/projects/global-assessment-human-induced-soil-degradation-glasod (G)LADA (Land Degradation Assessment in Drylands) publications, FAO & ISRIC: http://www.isric.org/projects/land-degradation-assessment-drylands-glada ### 7- Facilities required for teaching and learning Computer, Data show, Field trips | Course coordinator: | | | |---------------------|---|--| | Head of Department: | | | | Date: / | 1 | | Mandatory Module: Geomatics and Spectroscopy Mandatory Course: GIS and Spatial Analysis University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Geomatics and Spectroscopy Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: GIS and Spatial Analysis Code: SLM 14733 Credit Hours / ECTS: 3 / 9 Lecture: 2 Tutorial/Practical: 2 Total: 3 # **B-** Professional Information #### 1 – Overall aims of course For optimum utilization of available agricultural land resources on a sustainable basis, timely and reliable information regarding their nature, extent and spatial distribution along with their potential and limitations is very important. The efficiency and accuracy of data are improved when remote sensing data products and GIS are used. Spatial tools such as the Global Positioning System (GPS), Geographic Information Systems (GIS) and Remote Sensing (RS) for storing and analyzing spatial data can help us make better decisions in agriculture, land development, environmental protection and restoration. Specifically this decision making tools can be used in the context of agriculture in assessment of crop area extent, management of water resources, identification of pest attacks and diseases,
yield assessment studies, land suitability assessment for agriculture disaster management and precision agriculture. Geostatistical analysis is vital in creating maps of different soil characteristics, taking into account the spatial as well as directional variability of soil properties. The semivariogram and kriging are the heart of geostatistics and will be introduced to the students with their different types of estimation. Students will apply their new skills to one of several case studies in topics on agriculture, pest management, crop monitoring, water and land resource management and risk assessment among others. This course will offer a mixture of lectures, demonstrations and hands-on exercises using open source GIS and RS software. ### 2 – Intended learning outcomes of course (ILOs) ### a- Knowledge and understanding: - Understand the basic concepts of geographic information systems - Understand the principles of remote sensing - Know the various sources and types of remote sensing and GIS data - Understand spatial variability of the biophysical environment and how it affects the sustainable use of land resources. - Understand the role and scope of GIS/RS in environmental analysis #### b- Intellectual skills: - Make rational, scientific judgments on the validity and use of particular datasets for a range of environmental problems; - Make informed and critical judgments when faced with an issue concerning geographic information management - Analyse, synthesis and summarise geographic information requirement for a project; - Apply knowledge and understanding to address a wide range of spatial issues - Recognise the moral and ethical, as well as scientific issues that relate to geographic information and address these issues in context with current spatial data policies and strategies. - Develop the students' capacity to make informed and critical judgments between alternative solutions to specific problems using GIS/RS - Demonstrated ability to conceptualize, plan and conduct project in the area of land resource management. ### c- Professional and practical skills: - Synthesise information from a variety of sources - Gain experience in the applications of remote sensing and GIS to solving problems related to natural resources management - Knowledge of the GIS and RS tools that are available for natural resources management. - Skill to use GIS/RS software for spatial data preparation, interpretation, analysis and visualization. - In-depth skills of vector and raster processing. - Show proficiency in integrating GIS data analysis with simple statistical analysis. - Provide a critical evaluation of new and existing approaches to the remote sensing of the environment and the role of GIS - Develop students' abilities in the practical procedures of GIS/RS from data acquisition and processing through to effective display of results - Understand the complexity of spatial data and their relationships with nonspatial information - Perform spatial analysis on a varied range of spatial data - Gain complete understanding of spatial data acquisition procedures - Assess the quality of acquired spatial data - Design, develop and evaluate methodologies and develop critics of them, and where appropriate, propose new techniques for research. #### d- General and transferable skills: - The ability to reflect on the significance and inter-relationships of knowledge acquired both by study and from the professional experience of the student - The ability, on the basis of such reflection, to formulate original ideas and innovative proposals - The ability to initiate change on the basis of informed ideas and proposals, within the context of the student's personal professional activity #### 3- Contents ## **Topic** ### Week 1: Introduction and key concepts of GIS. - Introduction concepts of GIS and remotesensing in agricultural resource management - Planning for a GIS system installation - Introduction GIS data collection using GPS - Gathering data using mobile phones using (ODK) - Integrating GPS data into GIS - GIS Data sources and types for agriculture - Working with data from different sources - Geo database creation and maintenance for agricultural resources - Attributes manipulation in GIS - Facilitated practical exercises in working with tabular data in excel format ### Week 2: Global Positioning Systems (GPS). - What is GPS - How GPS works - Types of GPS - GPS data accuracy - GPS signal errors - What's WAAS - Limitations to GPS #### Week 3: Digital image processing techniques in agriculture resource management. - Obtaining satellite imagery for agriculture resource management - Satellite Image processing and calibration for agricultural resources - Land use classification using supervised classification - Land use classification using unsupervised classification - · Accuracy assessment and ground truthing technique - Agricultural resource planning and monitoring - Agro-Ecological zone mapping - · Agricultural resource mapping and updating - Mapping crop - Mapping soil variability - Mapping condition that affects plant health, yield, or quality of a crop e.g. weed infestation - Land suitability assessment for agriculture #### Week 4: Basics of Geostatistics - Overview of Geostatistics stationarity anisotropy directionality - Geostatistics versus normal interpolation ## Week 5: Spatial Analysis - Spatial analysis (non-geostatistical) - Spatial continuity analysis (geostatistical) ### Week 6: Variogram modeling - Basic models - Model fitting ### Week 7: Estimation - Deterministic estimation - Estimation criteria - Probabilistic (Geostatistical) estimation and Types of Kriging ### Week 8: GIS and RS in soil management. - · Characterizing soil spatial variability - Site-specific soil management prescription maps - Soil Mapping and Capability Assessment - Mapping Soil Erosion Risk Using RUSLE - Case study: GIS and Remote Sensing in Drought Monitoring #### Week 9: Precision farming using GIS and RS for crop management. - Yield monitoring and mapping - Grid sampling, management zones - Crop health analysis using NDVI - Remote sensing (RS) for precision agriculture - Crop stress detection - Crop modeling for yield estimation and production ### Week 10: GIS and RS for water management in agriculture: Multi criteria analysis in determining potential ground water zones - Mapping and monitoring irrigated land. - Flood monitoring; - Hydrological modeling and its application in agriculture - Statistical analysis procedures on historical series of rainfall data to produce agro climatic classification - Land suitability assessment for agriculture ### Week 11: GIS AND RS disease/pest management. - Using remote sensing and GIS to identify breeding areas - Determining spatial patterns of the disease and pathway - Crop damage assessment using change detection - Determine the spatial extent of a disease - Monitoring weather and ecological conditions favorable for crop pests and disease - Case study: Remote Sensing for grazing management ## Week 12: Participatory GIS. - Public participation in agricultural resource management - Using Google earth in agricultural resource management Web based Publishing for interactive and dynamic agricultural maps ## 4- Teaching and learning methods Lecture Directed Learning Independent Learning Exam preparation Exam taking ### 5- Student assessment methods ### Weighing of assessments | Mid-term examination | 10% | |------------------------|------| | Final-term examination | 40% | | Oral examination | 10 % | | Practical examination | 20% | | Semester work | 20% | | | | Total 100% ### Any formative only assessments • Essay (75% of continuous assessment mark) on a topic chosen by the student, but which is of relevance to the course and agreed in discussion with the teaching staff. - Beside frontal lectures, work in small groups is intended. Groups will be field handled with various applied examples, case studies, and hand-on exercises. - Results of field observations and analysis will be presented in the form of seminar papers. With regard to selected topics of seminars additional lectures are provided by visiting academic staff or researchers. #### 6- List of references - 1- Wilson, J. P. and A. S. Fotheringham. 2008. The handbook of geographic information science. Blackwell Publishing Ltd. USA. - 2- Longley, P.A, Goodchild, M.F., Maguire, D.J, and D.W. Rhind. 2005. Geographical Information systems and Science, 2nd edition. John Wiley and Sons. London. - 3- Burrough, P.A., and R.A. McDonnell. 1998. Principles of Geographic Information Systems. OxfordUniversity Press. - 4- Star, J., and J. Estes. 1990. Geographic Information Systems: An Introduction. Prentice Hall. - 5- Aronoff, S. 1989. Geographic Information Systems: A management perspective. WDL Publications, Ottawa, Canada. - 6- Sabins, F. 1997.Remote Sensing: Principles and Interpretations. 3rd edition. W.H. Freeman and Company, New York. (This is the main textbook) - 7- Lillesand, T. and R.W. Kiefer. 1987. Remote Sensing and Image Interpretation. John Wiley and Sons. - 8- Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition. Prentice-Hall, Upper Saddle River, NJ. - 9- Isaaks, E.H. and R. M.Srivastava. 1989. Applied Geostatistics. Oxford University Press, - 10- Chandra, A.M., and Ghosh, S.K., (2006). Remote sensing and geographical information system. Alpha Science International Ltd, Oxford, U.K. ## 6.1- Periodicals, Web sites, ... etc The GIS Primer: http://www.innovativegis.com/basis/primer/primer.html An Introduction to Geographic Information Systems. David J. Buckley, Pacific Meridian Resources, Inc. accessed December 2016. GIS.Com 'What is a GIS?' http://www.gis.com/whatisgis/index.html accessed December 2016. About GIS (GIS Lounge) http://gislounge.com/library/what-is-gis/ accessed December 2016. Natural Resources Canada: Fundamentals of Remote Sensing. accessed December 2016. http://www.nrcan.gc.ca/node/9309 # 7- Facilities required for teaching and learning Computer lab equipped with suitable GIS / RS / Geostatistics software, printers, scanners, plotters, etc Course coordinator: Prof. Dr. Mohamed Bahnassy **Head of Department:** Date: / / Mandatory Module: Geomatics and Spectroscopy Mandatory Course: Advanced Sepctroscopy University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Geomatics and Spectroscopy Department offering the program: Soil and Water Sciences **Department offering the course:** Soil and Water Sciences – Pesticides Chemistry Academic year / Level: Master Date of specification approval: # **A-** Basic Information Title: Advanced Spectroscopy Code: SLM 14734 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 # **B-** Professional Information #### 1 – Overall aims of course The aim of this course is to provide the students with the principles of spectral methods of analysis (Uv-Vis, Ir, Raman, emission, flame photometry, atomic, fluorescence spectroscopy) of chemical substances through spectroscopy education that would enable the student to work in the different related fields of analysis and research (water analysis, environmental analysis for detection of pollutants,.....etc) in a communicative team work. After successful completion of this course, students should be able to understand the techniques of separation and the concepts of spectroscopy analytical methods, identify and treat analytical data for quantitative and qualitative characterizations and apply the techniques to analysis of compounds ## 2 - Intended learning outcomes of course (ILOs) - e- Knowledge and understanding: - 1. Define the theories of instrumental methods of spectroscopic analysis - 2. Identify the theories of instrumental methods of spectroscopic analysis - 3. Discuss the theories of instrumental methods of spectroscopic analysis - 4. Recognize the theories of instrumental methods of spectroscopic analysis - 5. List the principles of spectroscopy. - 6. Write the different methods of spectroscopic analysis - 7. Mention methods of spectroscopic analysis depending on the type of the samples - f- Intellectual skills: - 1. Choose suitable spectroscopy methods of analysis of the substance to be analyzed - 2. Have analytical thinking - 3. Distinguishes between different techniques of spectral analysis. - 4. Conclude the theory of every technique of spectral analysis Professional and - g- Practical skills - 1. Use instruments in analytical laboratories. - 2. Use the sheets of spectroscopic analysis. - 3. Detect the quality of analyzed sample. - 4. Write full report justifying his judgment. - 5. Apply FTIR spectroscopy to obtain structural information - 6. Apply safety measures in practice - h- General and transferable skills: - 1. Interact efficiently with others. - 2. Work effectively in a team. - 3. Manage time effectively. - 4. Make appropriate decisions depending on studying situations. - 5. Collect the gained experiences in certain spectroscopy activities. - 6. Write effectively a scientific report in English. #### 3- Contents | Topic | Lecture | Tutorial/Practical | |-------|--|--| | 1 | Introduction to
Spectroscopy | Introduction to Spectroscopy | | 2 | Mass Spectrometry | Determination of Iron in water by
Spectrophotometric method | | 3 | Ultraviolet-Visible
Spectroscopy | UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions | | 4 | Infrared Spectroscopy | Determination of chromium and manganese in a mixture I | | 5 | Optical Spectroscopy | Determination of chromium and manganese in a mixture II | | 6 | Midterm Exam | | | 7 | FTIR (Fourier transform infrared spectroscopy) | FTIR: Comparison of Sample Preparation Techniques and Interpretation of Spectra of an Unknown | | 8 | Raman Spectroscopy | FTIR: Comparison of Sample Preparation Techniques and Interpretation of Spectra of an Unknown | | 9 | Flame Spectroscopy | Quantitative Analysis of Aspirin Tablets by an
Absorption Spectrophotometry | | 10 | Fluorescence Spectroscopy | Determination of conc of Potassium Permenganate (KMNO4) sample . | | 11 | Emission Spectroscopy | Effect of PH on the absorption Spectrum of Methyl Red (MR) | |----|--|--| | 12 | Nuclear Magnetic
Resonance Spectroscopy | Revision | | 13 | | Final Exam | # 4- Teaching and learning methods - 4.1. Lectures. - 4.2. Practical sessions. - 4.3. Group discussions. - 4.4. Data analysis. - 4.5. Problem solving. - 4.6. Seminars. - 4.7. Reports - 4.8. self-study ## 5- Student assessment methods - 5.1. Mid-term exam - 5.2. Oral exam - 5.3. Practical exam - 5.4. Final written exam - 5.5. Writing on a subject related to the **course** ## **Assessment schedule** | Assessment 1: Mid-term exam | Week 6 | |----------------------------------|-------------| | Assessment 2: Practical exam | Week 13 | | Assessment 3: Oral exam | Week 13 | | Assessment 4: Final written exam | Week 14 | | Assessment 5: report | Week 11, 12 | # Weighing of assessments | Mid-Term Examination | 5% | |------------------------|------| | Oral exam | 5% | | Practical exam | 20% | | Final report | 10% | | Final-Term Examination | 60% | | Total | 100% | ### **6- List of References** **6.1-** Course notes ## **6.2-** Essential books (text books) - J. Mendham, R.C. Denney, J. D. Barnes & M.J.K. Thomas, Vogel's Quantitative Chemical Analysis (6th Edition), Prentice Hall, Upper Saddle - Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Principles of Instrumental Analysis, (6th Edition), Stanford University, University of Kentucky, Stanley R. Crouch, (2007) - Daniel C. Harris, Quantitative Chemical Analysis, 8th Edition, W.H. Freeman and Company, W.H., New York, 2010 ## 7- Facilities Required for Teaching and Learning Personal Computer, Data Show Projector Course coordinator: Hend El-akkad / M. Abohashem/ Sameh Shaddad Head of Department: Date: / / | Mandatory Module: Bioeconomics of land management | |---| | Mandatory Course: Economics of Land Degradation | | | | | | | University: Alexandria Faculty: Agriculture **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Bioeconomics of land management Department offering the program: Soil and Water Sciences Department offering the course: Agricultural Economics Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Economics of Land Degradation Code: SLM 14760 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information #### 1 – Overall aims of course This course provides students with the economic background needed in understanding the true meaning of land resources, an assessment of the economic benefits and costs of land degradation, determination of optimal pollution rates, the obstacles encountered in land resources preservation, externalities and public goods and their role in degrading land resources, and roles of governmental policies in mitigating land degradation. Course participants will learn about a range of economic approaches and methods explicitly designed to solving land degradation issues. Upon completion, students will gain theoretical and applied knowledge about different methods which bring together economic, the environment, and social dimensions associated with land resources. **Course Keywords:** Land Resources, Market Failure, Environmental Degradation, Sustainability, Economic Growth, Biodiversity and Valuation, Cost-Benefit Analysis, Policy Measures, Economic Efficiency, Social Costs and Benefits, Expected Value, Land Value, Degradation Assessment, Externalities, Public Goods. The course is structured into three main phases: 1. Introduction to Environmental Economics and Land Resources. This part is confined to the issues related to land resources as perceived in the science of economics, economic efficiency, optimal rates of land degradation, externalities and public goods issues, and the supply of and demand for land and other natural resources. - 2. Economic Assessment of Benefits and Costs of Land Resources. This part curbs policy measures adopted by governments to mitigate land degradation and the assessment of social costs and benefits, as opposed to those of private costs and benefits. - 3. Project Appraisal. This part is a practice for students to do their own calculation of costs and benefits associated with preventing land from being degraded. ## 2 - Intended learning outcomes of course (ILOs) - C- Knowledge and understanding: - a1- Explain why economic analysis can be a useful tool for decision-makers. - a2- Discuss the important scientific terms commonly used in environmental economics as a field of specialty in economics. - a3- Identify the different aspects that lead to land resources degradation. - a4- Describe the steps behind each valuation method, the underlying assumptions and methods, along with empirical limitations. - D- Intellectual skills: - b1- Contrast how theory might look relatively easy comparing to applying the theoretical principles to issues related to land degradation incidents in reality. Past and present examples encountered all over the world will be presented to students. - b2- Compose a suitable method
for valuation of a non-marketed good or service, depending on the type of good or service in question. - b3- Assess critically the choice of valuation method, its application, and results for an existing valuation study. - E- Professional and practical skills: - c1- Examine and develop simple research designs for economic assessment of land degradation. - F- General and transferable skills: - d1- Complete running of a simple cost-benefit-analysis. #### 3- Contents #### **Contents** #### Week 1: Introduction to Resource and Environmental Economics: - Market Failure - Waste and Recycling - Sustainable Development - Environmental Degradation - Alternative Energy Sources - Population & Economic Growth - Natural Resource Management - Environmental Ethics ## Week 2: Important Concepts and Calculations in Environmental Economics: - Scrutinizing efficiency - Cost-benefit analysis - Types of efficiency - What goods and services should be produced? - With what resources should goods and services be produced? - Who will receive the final products? - Supply and demand - Expected-value calculations #### Week 3: Market Failure: - Imperfect competition - Imperfect information - Externalities - Public Goods ### Week 4: The Role of Government: - The Meaning and Purpose of Government - What is government - Is government necessary - The Role of Government - Historical Ideologies - Modern Problems with private solutions - Government Solutions to Market Failure - Enforcement of property rights - Provision of public goods - Liability - Regulations - Education and Moral Leadership - Dispute Resolution ### Week 5: Trade-offs and the Economy: ### Trade-offs between present and future - Why discount future benefits - Why discount future costs - Dynamic efficiency - Present-Value calculation - Discount Rates –who's got the number - What's your number? - •Trade-offs between growth and the environment - Growth versus Welfare - Is "green" growth and Oxymoron - Treading Lightly ## Week 6: Water Quality and Valuation: - The Value of Clean Water - Policy - Education - Market-Based Incentives ## Week 7: Environmental Quality and Valuation: What is quality of the environment? Terms of trade ### Where do we go from here? A brief look - Policy - Education - Market-based Incentives #### Week 8: Energy: ### **Energy Terminology** - Fossil Fuels - Nuclear Energy - Alternative Fuels #### **Energy Policy** - Efficient Source Selection - Market Structure and Price Control - Deregulation - Policy and Automobiles - CAFÉ Standards ## Week 9: Sustainability: #### Sustainability Criteria - Weak Sustainability - Strong Sustainability - The Downside of Mistaken Judgment - Other Types of Sustainability ## Sustainability and Efficiency ### Walking the walk - Recycling - Current Trend - Is It Efficient? - Recycling Policy ### Week 10: Biodiversity and Valuation: - Biodiversity Loss - Cost-Benefit Applications - The Noah Ark Model - Valuing Costs and Benefits - Types of Values #### Measures of Value - Market Prices - Contingent Valuation - Hedonic Pricing ### Week 11: Water Resource Management: - Water Rights - Water Pricing - Water Use Sustainability ## Week 12: Perspectives on Environmental Policy: - Command-and-Control Regulations - Incentive-Based Solutions - Punishment and Deterrence ### Week 13: Project Presentation and Oral Exams ## Week 14: Final written Exam ### 4- Teaching and learning methods - 4.1- Lectures using PowerPoint Presentations. - 4.2- Assignments including case-study analysis and formulation of small-scale projects which show economic thinking of land degradation issues. Assignments are to be made in groups. - 4.3- Searching scientific articles which handle the economics of land degradation in different parts of the world. Critical analysis of some articles is to be made. #### 5- Student assessment methods - 5.1 Oral to assess the skills of analyses and discussion. This is made in project presentations. - 5.2 Case study analysis to judge the skills of problem solving and data presentation and discussion. - 5.3 Assignments to measure students' ability to working in groups. - 5.4 A written final exam to weigh the student's overall understanding of the main concepts of the course. ### Assessment schedule Assessment 1: Project Presentation and Oral Exam – Week 13 Assessment 2: Case Studies - Weeks 6 to 9 Assessment 3: Group assignments – Weeks from 5 to 10 Assessment 4: Final Exam - Week 14 ### Weighing of assessments | Final-term examination: | 50% | |---|------| | Oral examination and project presentation | 20% | | Semester work: | 30% | | Total: | 100% | #### 6- List of references #### 6.1- Course notes - All of the course materials are of the electronic type. These materials are to be sent to students by e-mails or through the creation of a website to the students on Facebook or any other website venue. ## 6.2- Essential books (textbooks) David A. Anderson. 2010. "Environmental Economics and Natural Resource Management", 4th Edition, Routledge. ISBN-13: 978-0415640961 ISBN-10: 0415640962. ## 6.3- Recommended books Molly Espey. Workbook APEC 257. Natural Resources, the Environment and Economics. Department of Agricultural and Applied Economics Clemson University. https://www.sc.edu/sustainableu/Espey257test.pdf S Callan and J Thomas. 2000. Environmental Economics and Management: Theory, Policy and Applications. 2nd edition. Fort Worth: Dryden Press. G.Carlson., D Zilberman and J Miranowski. 1993. Agricultural and Environmental Resource Economics. 1st edition only. Oxford: Oxford University Press. ### 6.4- Periodicals, Web sites, ... etc. Determination of a number of research articles written on economics of land degradation is to be made. Research articles are mostly on the following link: http://ageconsearch.umn.edu/. This is a scientific research link associated with the University of Minnesota, Twin Cities, USA, Department of Applied Economics. ### 7- Facilities required for teaching and learning - Computer - Field visits to some locations. - Data Show. Course coordinator: Professor Sherin Ahmed Sherif **Head of Department:** Date: / / Mandatory Module: Bioeconomics of land management Mandatory Course: Biostatictical Analysis **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Bioeconomics of land management Department offering the program: Soil and Water Sciences **Department offering the course:** Agronomy Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Biostatistical Analysis Code: SLM 14761 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 # **B-** Professional Information #### 1 - Overall aims of course Statistics is the study of using theory and methods for the analysis of data arising from random processes or phenomena, i.e. the study of how to make sense of data. The field of statistics provides some of the most fundamental tools and techniques of the scientific method: - Formulating a hypothesis - Designing experiments and observational studies - Data collection - Summarizing data - Statistical inference Biostatistics is the branch of applied statistics directed toward application in biological sciences. The course is intended to provide the students with conceptual overview of statistical methods with emphasis on applications commonly used in the biological research. The course will briefly cover the topics of descriptive statistics and probability followed by a detailed description of the widely used experimental designs. The goal is to provide the student with the information needed to be able to statistically design an experiment, perform analysis and interpret the results. ### 2 – Intended learning outcomes of course (ILOs) - 1. Outline the functions and principles of biological statistics - 2. Distinguish between the measures of location and measures of variation - 3. Choose the best statistical design for a given biological experiment - 4. Formulate the tested hypothesis - 5. Analyze the data statistically according to the proper chosen experimental design - 6. Conclude a statistical inference #### 3- Contents #### Contents ## Week 1: Introduction and concepts: - Functions of biological statistics - Definitions of data, variable, population and sample - Principles of statistics (repetition, randomization and local control) - Sampling (sources of samples, types of samples and factors determining sample size) ## Week 2: Descriptive measures: - Measures of location - Measures of variation ### Week 3: Probability theory and data distribution - Theories of probability - Normal distribution and data transformation #### Week 4: t-test and F-test: - T-test in pairs comparison of means - T-test in groups comparison of means - F-test comparison of variance of two populations ## Week 5: ANOVA and experimental designs: - Analysis of variance (ANOVA) - Complete randomized design (CRD) - Randomized complete block design (RCBD) # Week 6-8: ANOVA and experimental designs: - Latin square - Split and split-split - Factorial 2 and 3 factors - Nested design - Combined analysis (homogeneity of error) - Least significant difference (L.S.D.) - Regression analysis - Correlation analysis Week 9: Chi square distribution - Non-parametric (categorical) statistics Week 10: Multivariate analysis of variance (MANOVA) Week 11: Principal component analysis (PCA) Week 12: Clustering ## 4- Teaching and learning methods Lecture Directed Learning Independent Learning Exam preparation Exam taking #### 5- Student assessment methods ## Weighing of assessments | Mid-term written exam | 20% | |--------------------------------------|------| | Final written exam | 40% | | Oral exam and/or final report | 20% | | Coursework and continuous assessment | 20% | | Total | 100% | #### 6- List of references - 1. Gomez, K.A., and Gomez, A.A. (1984). Statistical procedures
for agricultural research. Second edition. A Wiley-Interscience Publication. John Wiley and Sons. - 2. Steel, R.G.D., and Torrie, J.H. (1980). Principles and procedures of statistics. Second edition. New York: McGraw-Hill. - 3. John, P.W.M. (1971). Statistical design and analysis of experiments. New York: Macmillan. - 4. Winner, L. (2004). Introduction to Biostatistics. University of Florida. web.stat.ufl.edu/~winner/sta6934/st4170_int.pdf ## **Course coordinator:** ## **Head of Department:** Date: / | Mandatory Module: Scientific English and Proposal Writing | |---| | Mandatory Course: English for Scientists and Proposal Writing | | | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Scientific English and project proposal Writing Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information **Title:** English for Scientists and Proposal Writing Code: SLM 14762 Credit Hours / ECTS: 1/3 Lecture: 1 Tutorial/Practical: Total: 1 # **B-** Professional Information #### 1 - Overall aims of the course English is the language of science. Since the end of WWII, English has become the established language of scholarly communication, but not without controversy. The overwhelming majority of communication in the natural sciences today takes place in English; in print and at conferences; in E-mails and in Skype-mediated collaborations, confirmable by wandering through the halls of any scientific research facility worldwide. The adoption of English as the universal language of science is due in part to historical, political, and economic factors which favored English over other potential candidate languages such as Chinese, French, German, Russian, or Spanish. English is therefore well positioned to become the default language of science in the wake of the disruptive wars of the first half of the 20th century. The use of English as the scholarly *lingua franca* has become self-reinforcing, with academic reward schemes in many countries, placing great emphasis on publication in international (mostly English-language) journals. Roughly 80% of all the journals indexed in Scopus are published in English. It is, therefore, mandatory for scientists and researchers, in particular, to meet a certain level of English language proficiency. English for Scientists will develop the learners' language skills with practical reading and writing skills, to be utilized in writing proposals and applying for research funding. This is since the write-up of proposals is both a science and an art. A significant number of researchers do not either know it as a science or not gifted with it as an art. This course aims at equipping students with the scientific component, leaving the rest to the individual talents of the students. ### 2 – Intended learning outcomes of course (ILOs) - i- Knowledge and understanding: - a1- Describe the scientific thinking and the scientific ideology. - a2- Outline the concept of "research problem" and hypothesis testing. - a3- Locate the significance of literature review. - j- Intellectual skills: - b1- Identify attractive research objectives. - b2- Distinguish between outcomes and outputs. - b3- Arrange the research methodologies. - b4- Create a timeframe for his/her research project. - k- Professional and practical skills: - c1- Adjust the research activities to the specified timeframe. - c2- Justify the needed budget. - c3- Design a good and fund-raising research proposal. ### 3- Contents #### **Contents** #### Week 1: Introduction and Expectations: - Why English is the language of science? - Principles of writing scientific English. - Logical thinking, analysis and synthesis ## Week 2-3: Research proposal: - What is a proposal? - Why write a proposal? - How to prepare for writing a proposal? - The concept notes - Communicating in science - Making good arguments ## Week 4: Build a proposal writing team: - Introducing the role and responsibilities of the principle investigator (PI) in the project, as well as, the role of the Co-PI and the other team members - Introducing the IMRAD Format ## Week 5: Explaining the different components of a proposal: - Title - Abstract - Keywords - Introduction and Review of Literature - The Problem - Objectives - Data and Methods - Analysis - Results - Conclusions and Recommendations ## Week 6: Explaining the different components of a proposal: - Determining the problem and formulating the research hypothesis - Stating the objectives - Outcomes and outputs ## Week 7: Explaining the different components of a proposal: - Description of methodology and activities - Time plan - Budget and budget justification Week 8: Project implementation, monitoring, evaluation, and follow up. Week 9: Project risk management and SWOT analysis Week 10: Logical framework matrix and Gantt chart Week 11: Presenting research results Week 12: Discussion of projects designed by the students' groups ## 4- Teaching and learning methods - 4.1- Lectures - 4.2- Practical sessions - 4.3- Group assignments ### 5- Student assessment methods - 5.1- Oral to assess the communication skills - 5.2- Written to assess the understanding and scientific background - 5.3- Practical to assess the intellectual skills - 5.4- Assignments to assess the professional skills and team work skills ## Assessment schedule Assessment 1: Assignments – Week: 4th Assessment 3: Practical exam – Week: 13th Assessment 4: Oral exam – Week: 13th Assessment 5: Final written exam – Week: 14th ### Weighing of assessments | Final-term examination | 40% | |------------------------------------|------| | Oral examination | 20% | | Practical examination | 20% | | Group assignment and semester work | 20% | | Total | 100% | #### 6- List of references - 5. How to Write a Research Proposal, http://www.ic.daad.de/accra, Accessed on December 24th, 2016. - 6. Ellman, Patricia. 2014. English Grammar for Economics and Business. For students and professors with English as a foreign language. 2nd edition, ISBN 978-87-403-0653-8 and www.bookboon.com, Accessed on December 23rd, 2016. - National Science Foundation. A Guide for Proposal Writing. Directorate for Education and Human Resources. Catalog of Federal Domestic Assistance: CFDA 47.076. https://www.nsf.gov/pubs/1998/nsf9891/nsf9891.htm, Accessed on December 22nd, 2016. - 8. Greener, Sue and Joe Martelli. An Introduction to Business Research Methods. 2nd edition. ISBN 978-87-403-0820-4 and www.bookboon.com - 9. Stapleton, Paul. Writing for research, presentation and project proposals. Online Draft Copy | 7- | Facilities | required | for te | eaching | and | learning | |----|-------------------|----------|--------|---------|-----|----------| | | | | | | | | | 4. Co | mputer | 2. Data Show | |-----------|------------|--------------| | Course co | ordinator: | | Date: / **Head of Department:** Mandatory Module: Scientific English and Proposal Writing Mandatory Course: Research Methods and Scientific Communications **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Scientific English and project proposal Writing Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Research Methods and Scientific Communications Code: SLM 14763 Credit Hours / ECTS: 1/3 Lecture: 1 Tutorial/Practical: Total: 1 # **B-** Professional Information #### 1 – Overall aims of course: The course aims at introducing the student with different ways to construct an academic concept in basic scientific methods and communication, as well as gaining awareness and skill in adapting writing and oral presentation style and technique to different audiences and formats and diagnose the numeracy and literacy skills for the students relevant to their discipline of study. ### 2 – Intended learning outcomes of course (ILOs) ### I- Knowledge and understanding: - a1- Explain the differences between a conceptual and a technical research design; - a2- Describe features of an experimental, cross-sectional, and longitudinal design; - a3- Describe the pros and cons of different data collection methods; - a4- Discuss what random and non-random sampling is about; - a5- Discuss the reliability and validity of measurements; - a6- Discuss key research methodologies relating to communication in environmental sciences and - a7- Outline an experimental design and data analysis. #### m- Intellectual skills: - b1- Determine elaborated research designs in the environmental sciences; - b2- Determine appropriate approaches to particular research questions; - b3- Develop skills in drafting and editing of texts and - b4- Develop skills in oral presentation. # n- Professional and practical skills: - c1- Illustrate and begin to apply the practical skills required in professional research, from question formulation to publication and - C2- Examine texts presenting the same content for different audiences, and reflect critically on the editing process and audience engagement. ### o- General and transferable skills: d1- Show findings orally in a group session. ### 3- Contents | Topic | No. of Hours | Lecture | Practical/Tutorial | |-------------------------|--------------|---------|--------------------| | A- Research methodology | 4 | 4 | - | | B- Scientific writing | 8 | 8 | - | # 3.1- Tentative Timetable for the course: | Types | Topic | |----------|---| | | Week 1: FORMULATING A RESEARCH PROBLEM
 | | 1 Research: a way of thinking | | | 2 The research process: a quick glance | | | 3 Reviewing the literature | | | 4 Formulating a research problem | | | 5 Identifying variables | | | 6 Constructing hypotheses | | | Week 2: CONCEPTUALISING A RESEARCH DESIGN | | | 7 The research design | | | 8 Selecting a study design | | Topic A: | CONSTRUCTING AN INSTRUMENT FOR DATA COLLECTION | | TOPIC A. | 9 Selecting a method of data collection | | | 10 Collecting data using attitudinal scales | | | 11 Establishing the validity and reliability of a research instrument | | | Week 3-4: SELECTING A SAMPLE | | | 12 Selecting a sample | | | | | | Week 5-6: WRITING A RESEARCH PROPOSAL | | | 13 How to write a research proposal | | | | | | Week 7-9: COLLECTING DATA | |----------|--| | | 14 Considering ethical issues in data collection | | | | | | Week 9-10: STEP VII PROCESSING AND DISPLAYING DATA | | | 15 Processing data | | | 16 Displaying data | | Topic B: | Week 11-12: STEP VIII WRITING A RESEARCH REPORT | | | 17 Writing a research report | | | 18 Research methodology and practice evaluation | ## 4- Teaching and learning methods - 4.1- Class Participation - 4.2- Frontal lectures - 4.3- Microteaching - 4.4- Home reading and assignments - 4.5- Discussion sessions - 4.6- Course website ### 5- Student assessment methods - 5.1 Exercises are useful to assess the skills of solving problems and presenting data and discussion; - 5.2 Midterm exam is useful to assess the skills of understanding the scientific background of the material studied in the program; - 5.3 5-minute research summary is important to assess the skills of ensuring academic integrity; - 5.4 Research proposal is useful to point out what you hope to accomplish and your desired outcomes from the research. and - 5.5. Final exam is useful to test the students' knowledge and understanding of a topic, as well as their ability for application, analysis, integration and synthesis. ## Assessment schedule | Assessment 1 Exercises | Every 2 weeks | |--------------------------------------|------------------------| | Assessment 2 Midterm exam | week: 7 th | | Assessment 3 Case study presentation | Week: 12 th | | Assessment 4 Oral exam | Week: 13 th | | Assessment 5 Final exam | Week 14 th | ## Weighing of assessments | Exercises | 10% | |---------------------------|------| | Midterm exam | 10% | | 5-minute research summary | 20% | | Research proposal | 20% | | Final exam | 40% | | Total | 100% | ### 6- List of references ## 6.1- Course notes Course handouts in a PDF format for different topics will be available for students. ## 6.2- Essential books (text books) • **Kumar, R.** (2014). Research Methodology: A Step-by-Step Guide for Beginners. Sage Publications Ltd., ISBN 978-1-4462-6996-1. ## 6.3- Recommended books • **Barnard**, C.F. and McGregor P., 2011. Asking questions in biology. A guide to hypothesistesting, experimental design and presentation in practical work and research projects. Fourth edition. Benjamin Cummings. ### 6.4- Periodicals, Web sites, ... etc A course web site that will be initiated in the near future is the main website for the class ## 7- Facilities required for teaching and learning - Computers and internet - Video films - Field visits - Data-show | Course coor | dinator: Gaber M. Hassan, Ph. D. | |-------------|----------------------------------| | Head of Dep | partment: | | Date: / | / | | Specialization Module: Land Use Planning and Assessment | |--| | Elective Course: Land Use Planning & Sustainable Development | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Land Use Planning and Assessment Department offering the program: Soil and Water Sciences **Department offering the course:** Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Land Use Planning for Sustainable Development Code: SLM 14735 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information #### 1 – Overall aims of course This course aim at bridging the relationship between land use planning and social and environmental aspects of sustainability, exploring both dynamic drivers of land use plans and its societal and environmental consequences. Topics covered will include the planning process, as well as the sustainable development goals SDG's. Students will be encouraged to think critically and creatively about the role of land use change within broader sustainability agendas, such as those outlined in the Sustainable Development Goals #### 2 – Intended learning outcomes of course (ILOs) - 1. Analyze the complex land use change dynamics, - 2. Find cause/effect relationships across scales - 3. Compare different land use planning techniques - 4. Understand the effect of land use planning process on the sustainability - 5. Calculate the environmental performance using different qualities #### 3- Contents ## **Topic** Week 1: Nature and scope of land use planning What is land-use planning? When is land-use planning useful? Making the best use of limited resources #### Goals The focus of land-use planning Planning at different levels # Week 2: Overview of planning process The need for flexibility Planning and implementation Planning as an iterative process The land-use plan ## Week 3-5: Steps in land use planning - Step 1. Establish goals and terms of reference - Step 2. Organize the work - Step 3. Analyze the problems - Step 4. Identify opportunities for change - Step 5. Evaluate land suitability - Step 6. Appraise the alternatives: environmental, economic and social analysis - Step 7. Choose the best option - Step 8. Prepare the land-use plan - Step 9. Implement the plan - Step 10. Monitor and revise the plan ### Week 6-8: Sustainable Development Goals - 1. No Poverty - 2. Zero Hunger - 3. Good Health and Well-being - 4. Quality Education - 5. Gender Equality - 6. Clean Water and Sanitation - 7. Affordable and Clean Energy - 8. Decent Work and Economic Growth - 9. Industry, Innovation and Infrastructure - 10. Reduced Inequalities - 11. Sustainable Cities and Communities - 12. Responsible Consumption and Production - 13.Climate Action - 14.Life Below Water - 15.Life on Land - 16. Peace, Justice and Strong Institutions - 17. Partnerships for the Goals ## Week 9-10: Sustainable development indicators - 1. Economic Prosperity - 2. Long Term Unemployment - 3. Poverty - 4. Knowledge and Skills - 5. Healthy Life Expectancy - 6. Social Capital - 7. Social Mobility in Adulthood - 8. Housing Provision - 9. Greenhouse Gas Emissions - 10. Natural Resource Use - 11. Wildlife - 12. Water Use - 13. Population Demographics - 14. Debt - 15. Pension Provision - 16. Physical Infrastructure - 17. Research and Development - 18. Environmental Goods and Services Sector - 19. Avoidable Mortality - 20. Obesity - 21. Lifestyles - 22. Infant Health - 23. Air Quality - 24. Noise - 25. Fuel Poverty - 26. CO2 Emissions by Sector - 27. Energy from Renewable Sources - 28. Housing Energy Efficiency - 29. Waste Disposal and Recycling - 30. Land Use - 31. Water Quality - 33. Sustainable Fisheries - 34. Priority Species and Habitats ## Week 11-12: Student case study Students will select one of these dimensions for further independent research, and will present an assignment in which they apply theoretical concepts to critically examining the societal/environmental challenges of land use change. ## 4- Teaching and learning methods - 4.1-Lectures - 4.2-Seminars - 4.3- Internet search - 4.4-Turorials #### 5- Student assessment methods 5.1 Exams to assess student comprehension of the subject 5.2 tutorials to assess student ability to think critically #### Assessment schedule Assessment 1 Midterm exam Week 7 Assessment 2 Tutorials Week 2, 4, 8 Assessment 3 Oral exam Week 13 Assessment 4 Final exam Week 14 ## Weighing of assessments Mid-term examination10%Final-term examination60%Oral examination10%Semester work20%Total100% ## Any formative only assessments #### 6- List of references - Adger, W. N. et al. Advancing a political ecology of global environmental discourses. Centre for Social and Economic Research on the Global Environment, 2000. Available online:http://www.cserge.ac.uk/sites/default/files/gec 2000 10.pdf - Borrass Jr., S.; Franco, J. (2012). Global land grabbing and trajectories of agrarian change: a preliminary analysis. Journal of Agrarian Change, 12 (1), 34-59. - Cline-Cole, R. (1996) Dryland forestry: manufacturing forests & farming trees in Nigeria in Leach, M. & Mearns, R (eds). The lie of the land: challenging received wisdom on the African environment. - Foley, J. A., DeFries, R., et al. (2005). Global consequences of land use. Science.. , 309 (5734), 570-574. - Geist, H.J. and Lambin, E.F. (2002) Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience. 52(2): 143-150 - Lambin, E. F., et al. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change: human and policy dimensions, 11 (4), 261-269. - Leach, M., & Mearns, R. (1996). The lie of the land: challenging received wisdom on the African environment. James Currey Ltd. - Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. New York, 102. - Mol, A.P.J., and Sonnenfeld, D.A., (eds.) 2000, Ecological modernisation around the world: persectives and critical debates, London Routledge. - Nelson, D. R., Adger, W. N., & Brown, K. (2007). Adaptation to environmental change: contributions of a resilience framework. Annual review of environment and resources, 32 (1), 395. - Raworth, K. (2012) "A Safe and Just Operating Space for Humanity: Can we live within the Doughnut?" Oxfam Discussion Paper Available online: -
https://www.oxfam.org/sites/www.oxfam.org/files/dp-a-safe-and-just-space-for-humanity-130212-en.pdf Rockström, J., et al. (2009) "Planetary boundaries: exploring the safe operating space for humanity." Ecology and society [electronic resource]. 14.2 Scoones, I. (1998). Sustainable rural livelihoods: a framework for analysis. IDS Working Paper 72. Brighton: IDS Course coordinator: Prof. Dr. Mohamed Bahnassy **Head of Department:** Date: / / | pecialization Module: Land Use Planning and Assessment | |--| | Elective Course: Advanced Land Evaluation | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Land Use Planning and Assessment Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Advance Land Evaluation Code: SLM 14736 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information #### 1 – Overall aims of course The course aim to provide the students with the types and methods of land evaluation, either land capability or suitability for different crops and determine the limitations of its productivity. ## 2 - Intended learning outcomes of course (ILOs) - p- Knowledge and understanding: - a1- Understand the different systems of land evaluation. - a2- Identify the limitations of soil productivity. - a3- Demonstrate how to use the different programmes of land evaluation. - q- Intellectual skills: At the end of this course, the students will be able to: - b1 Apply the land capability and suitability evaluation. - b2 Determine the different attributes which the land capability and suitability for different crops. - b 3 Select the proper system for land evaluation. - b4 Develop the computer skills in relation to land evaluation. - r- Professional and practical skills: - c1— Predict the land capability and suitability for different crops in different agroecosystems. - c2- Compare and assessed the different programs of land evaluation. - s- General and transferable skills: - d1- Use the modern technology in land evaluation. - d2- Develop the team work concept in land evaluation. - d3- Improve the creative thinking and communication skills in land evaluation issues. - d4 Develop the holistic approach in land evaluation studies. #### 3- Contents | _ | | |----|------| | TΛ | nic | | 10 | טועי | #### Week 1-3: Introduction to the aims and principles of land evaluation Types of land evaluation Some definition used in land evaluation #### Week 4-5: Land capability evaluation: Concepts and assumption Structure of the classification Survey procedures and presentation of the results. ### Week 6-7: Land suitability for different crops: Structure of the classification Procedures of Land suitability classification #### Week 8-9: Parametric methods for calculating suitability indices Examples of software used in land evaluation GIS and RS techniques # Week 10-12: Land evaluation in different agroecosystems Irrigated land Dry land Rain-fed agriculture Extensive grazing. # 4- Teaching and learning methods - 4.1- Lectures - 4.2- Seminars - 4.3- Case studies and problems - 4.4- Internet search ### 5- Student assessment methods - 5.1 Quizzes - 5.2 Mid-term Exam - 5.3 Oral Examination - 5.4 Final-term theoretical Examination #### Assessment schedule | Assessment 1 | Quizzes | Week: (week 3 & week 10) | |--------------|---------|--------------------------| |--------------|---------|--------------------------| Assessment 2 Mid-term Exam Week: (week 8) Assessment 3 Oral Exam Week: (week 12) Assessment 4 Final-term Exam Week: (week 13) ## Weighing of assessments | Mid-term examination | 10% | |------------------------|------| | Final-term examination | 70% | | Oral examination | 10 % | | Quizzes | 10% | | Total | 100% | #### 6- List of references ### 6.1- Course notes . PowerPoint presentation ## 6.2- Essential books (text books) Dent ,D. and Young ,A. (1981):Soil Survey and Land Evaluation. George Allen &Unvrin Ltd.,London U.K. FAO (1976): A Framework for Land Evaluation. Bulletin No.32. ## 6.3- Recommended books FAO (1985): Guidelines: Land Evaluation for Irrigated Agric. Bulletin No.55. FAO (1985): Guidelines: Land Evaluation for Rainfed Agric. Bulletin No.52. FAO (1991): Guidelines: Land Evaluation for extensive grazing Bulletin No.58. # 6.4- Periodicals, Web sites, ... etc Soil Sci. Soc. Amer. J. Geoderma - J. Soil and Water Conservation - J. Soil Sci. - J. Env. Quality FAO.org # 7- Facilities required for teaching and learning Computer --- Data show **Course coordinator:** **Head of Department:** Date: / / | Specialization Module: Land Use Planning and Assessment | |---| | Elective Course: Climate Change and Food Security | | | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Land Use Planning and Assessment Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Climate Change and Food Security Code: SLM 14737 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 ## **B-** Professional Information #### 1 - Overall aims of course This course presents Earth's climate system and explores the science of global climate change. Course topics include the greenhouse effect, El Niño, ocean circulation, the science of global warming and climate change impacts on agricultural production. Students will learn: how the climate system works; what factors cause climate to change across different time scales and how those factors interact; how climate has changed in the past; how scientists use models, observations and theory to make predictions about future climate; and the possible consequences of climate change for our planet. The course explores evidence for changes in ocean temperature, sea level and acidity due to global warming. Students will learn how climate change today is different from past climate cycles and how satellites and other technologies are revealing the global signals of a changing climate. The course looks at the connection between human activity and the current warming trend and considers some of the potential social, economic and environmental consequences of climate change. Students will explore the concept of food security in all of its dimensions including production, storage, distribution, access and stability. We will place special emphasis on challenges to global food security, constraints on the modern "conventional" farming system, and sustainable strategies to increase global food production. Topics of food production systems, population growth, food production in developing countries, and novel strategies to address food security. Students will describe potential impacts of climate change on food security; and understand how climate change effects fit into the array of food security determinants at local and global level. #### 2 – Intended learning outcomes of course (ILOs) #### a- Knowledge and understanding: At the end of this course will be able to: - 1.Demonstrate a solid understanding of the climate system. - 2.Explore the concept of energy balance and the greenhouse effect and How does climate works? - 3. Evaluate the various factors that shape climate. - 4.Describe changes in the Earth's climate through time, with special emphasis on the Ice Ages and the last 1000 years. - 5. Describe how past climates contribute to our current understanding of climate change. - 6.Illustrate components of the Earth's carbon cycle and quantitatively describe how addition of CO2 to the atmosphere through burning fossil fuels will influence the climate. - 7. Describe the character of climate models (GCM) and how they are constructed - 8.Examine the drivers and forcing's of climate change and What causes the climate to change - 9. Gain the historical perspective necessary to assess our recent changes in climate (i.e. global warming over the last 100 years) - 10. Explain the consequences, risks, and uncertainties of climate change. - 11. Address What is food security and how is it measured? - 12. Outline challenges to global food security, - 13. Describe potential impacts of climate change on food security; and understand how climate change effects fit into the array of food security determinants at local and global level - 14. How are food systems being transformed by globalization and climate change?, #### b- Intellectual skills - b1 Identify causes for climate change and to classify causes based on time-scales. - b2-... Analyze circulation in the atmosphere and ocean. - b3-... Criticizes study of ocean acidification and marine life - b4- Compare among the different scenarios of IPCC for climate change with an evaluation of their environmental impacts - b5- Differentiate between adaptation and mitigation of climate changes - b6- Analyze the risk assessment and management plans for climate change - b7- Choose the appropriate physical equation for expressing earth's temperature - b8- Assess the character of climate models and how they are constructed. - b9- Evaluate the current food system in the context of climate change - b10- Synthesis of several key trends in the food and climate systems - b11- Suggest measures for achieving food security in the face of climate change #### c- Professional and practical skills - c1- Identify basic methods for determining past climates. - c2- Calculate earth temperature with changing CO2, Albedo, emmisivity - c3- Use the climate change interactive models - c4- Solve simple mathematical models og climate change - c5- Measure and Monitor GHG emissions - c4- Implement measures to reduce emissions
of GHGs to the atmosphere ## d- General and transferable skills - d1-1. Develop effective communication skills Written, oral, interpersonal, group. - d2. Develop higher cognitive skills Critical thinking, creativity, analytical ability. - d3. Cultivate the virtues Ethics, responsibility, honor, tolerance, respect for others, empathy. - d4. Develop focus and depth in one or more disciplines. - d5. Develop leadership skills Ability to stimulate and direct collaborative learning and collaborative action. - ${\tt d6.\ Develop\ a\ global\ perspective-Broad\ intellectual\ and\ cultural\ experience\ through\ active}$ - d7. Engagement, an understanding of the interactions among the individual, society, and the natural world. - d8. Prepare for lifelong learning Independent thinking and learning, learning to find information, asking the right questions.. ### 3- Contents | Week | Topic | Lecture s | Assignment | |------|---|--|---| | 1 | Introduction
to climate :
How Does
Climate Work? | Review the course orientation. Explore the concept of energy balance and the greenhouse effect. Analyze circulation in the atmosphere and ocean. | Exercise 1: climate trend of home town Essay 1: 10 years of Climate records (Hometown) Readings: http://www.grida.no/climate/ipcc_tar/wg1/pdf/TAR-01.pdf | | 2 | History of
Earth's climate | Discover how ice cores are
used to decipher past climate Ice Age Climate Cycles -
Milankovitch Theory | Exercise 2: Climate trends Through the Last 1000 Years Essay 2, Ice core Science | | 3 | What Causes
Climate to
Change? | Explore early climate science with the Keeling Curve. Global warming: An Overview, The Role of Carbon Dioxide, / Methane, The Earth's Carbon Reservoirs | Exercise 3, Calculate GHG footprint of your country. Essay 3, Reduce your footprint | | 4 | GCMs & predictions | Examine the drivers of climate change. Understand the relationship between drivers and forcing's. | Exercise 4, Critically read and summarize a scientific article on a GCM. Exercise 4: Test Typical GCM Essay 4, Your GCM | | 5 | How Does the
Climate
System
Respond to
Input? | Climate feedbacks. How feedbacks can amplify or
damp the temperature
response. Temperature response with
feedbacks. | Exercise 5, feedbacks https://www.futurelearn.com/courses/ca uses-of-climate-change/0/steps/13593 | | 6 | Climate
change impact
on agriculture | Predicted Changes for
Agricultural Production
Systems Across Regions | Exercise 6 Analyze data http://www.agritrade.org/events/docume | | 7 | Constraints on | Climate change impacts and | Essay 6: | | | Food and
Farming from
Climate
Change | consequences for food systems • Indirect consequences of climate change impacts on the different dimensions of food security | http://environ.andrew.cmu.edu/m3/s2/subsect/predict.htm | |----|---|---|--| | 8 | Risk
assessment &
management
of CC impacts | Mitigation Strategies Adaptation strategies Examples of Success stories Climate change adaptation and food security | Exercise 5,
Essay 6, | | 9 | Challenges for food systems:
Biofuels & GM crops | How will biofuel production affect food security and poverty? GMO and food security http://economia.unipv.it/naf/othernAfpubl/Master/GMO/GMOs.pdf | Reading:
http://www.fao.org/docrep/017/i3126e/i
3126e.pdf | | 10 | Reducing risks
to food
security from
climate
change | Disaster risk reduction www.preventionweb.net/files/31 093 carloscaramella.pptx | Reading:
http://www.sciencedirect.com/science/ar
ticle/pii/S2211912415300262 | # 4- Teaching and learning methods | Lectures | are used to provide basic information about key concepts and important characteristics of agricultural systems. | |------------------------------|---| | Tutorials | serve to reinforce and extend some of the ideas raised in the lectures and practical. They are also designed to require students to find information and interpret it. | | Practical demonstrations | are used to illustrate some of the production practices described in the lectures and to in traduce students to some of the terminology used in agriculture. The students work as a group and many of the demonstrations also help to build teamwork and to foster the relationships between students. Aspects of these demonstrations are assessed in a practical exam. | | The formal practical classes | are used to (a) introduce students to terms commonly used in agricultural science ('the language of the discipline'), The practicals are interactive with periods of discussion interspersed during the practical exercises. The activities of the practical exercises are assessed in a practical exam at the end of the semester as well as a short report on two practicals. | | The essay | is used to develop written communication skills and to encourage critical evaluation if information. Students have the choice to resubmit the essay after it is marked after responding to the comments on the essay from the marker. Students are also required to find primary sources of information and are encouraged to use the library data bases to find relevant | |-----------|---| | | information. | #### Workload The information below is provided as a guide to assist students in engaging appropriately with the course requirements. The work load is 6 contact hours per week, which will be based on 2-3 hours of lectures, a 1-hour tutorial and 2-3 hours of practical work or practical demonstrations. The amount of contact time will vary from week to week depending on the nature of the practicals. For example, in a number of weeks at Roseworthy there will not be any lectures but there will be demonstrations and practical exercises in the morning and afternoon. It is expected that students will spend an average of approximately 5 hours per week in addition to the formal contact time on assignments, #### 5- Student assessment methods | 5.1. Assignment | To assess the ability to work independently and | | |-------------------------|---|--| | | discussion | | | 5.2.Homework | To assess understanding | | | 5.3.Term
paper | To assess the ability to work in group to form subject | | | | from pieces | | | 5.4.Presentation | To assess the ability to communicate and discuss | | | 5.5.Essay report | To assess IT skills | | | 5.6.Case study | To assess the skills of Solve problems, Present data | | | 5.7 Mid-Term Exam | To monitor the learning outcomes | | | 5.8.Oral exam | To assess skill of analysis and discussion | | | 5.9.Practical exam | To assess the professional skills | | | 5.10.Final written exam | To assess the ability to remember, understand, analysis, problem solving skills | | #### **Assessment Schedule** | | Week No. | % | |-----------------|------------|----| | 1. Assignment | Every week | 3 | | 2.Homework | Every week | 3 | | 3.Term paper | Week 5, 9 | 5 | | 4.Presentation | 10 | 5 | | 5.Essay report | 2, 5, 8 | 6 | | 6.Case study | 6 | 3 | | 7 Mid-Term Exam | 7 | 10 | | 8.Oral exam | 11 | 10 | | 9.Practical exam | 12 | 15 | |-----------------------|----|------| | 10.Final written exam | | 40 | | Total | | 100% | Any formative only assessments ## 6- List of references 6.1- Course notes Handout and hard copy of PP-presentations 6.2- Essential books (text books) 1- Climate change: Impacts, vulnerabilities And adaptation In developing countries https://unfccc.int/resource/docs/publications/impacts.pdf 2- Climate Change: Current Issues https://www.ifw-kiel.de/pub/e-books/climate_change.pdf 3- Food security and global security http://www.ieee.es/Galerias/fichero/cuadernos/CE 161 B.pdf 3- Chicago Council on Global Affairs, Advancing Global Food Security in the Face of a Changing Climate, 2014. Download at: http://www.thechicagocouncil.org/files/Studies Publications/TaskForcesandStudies/GADI/advancing global foodsecurity in face climate change.aspx ## 6.3- Recommended Readings | Required Text Reading | Optional Supplemental Reading | | | |--|--|--|--| | Intro to Climate Change
Research | The Discovery of Global Warming by Spencer Weart Global Climate Change Research Explorer | | | | History of Earth's Climate | What is Paleoclimatology? by US NOAA Earth's Climatic History by Pidwirny | | | | Causes of Climate | Global Warming Facts and Our Future Causes of Climate Change by US EPA Encyclopedia of Earth: GH effect | | | | World of Tomorrow: Computer
Simulation Models | Simple Models of Climate Change by Weart GCMs by Weart IPCC Chapter on GCMs | | | | Plants & CO ₂
Climate Change & Biosphere | Food Quality by Bloom Encyclopedia of Earth: Biosphere, Ecosystem Disturbance, Species Shifts | | | | Mitigation | IPCC Mitigation of Climate Change Report, Transportation | | | | Mitigation | IPCC Mitigation of Climate Change Report, Energy Supply IPCC Mitigation of Climate Change Report, Buildings IPCC Mitigation of Climate Change Report, Industry IPCC Mitigation of Climate Change Report, Agriculture, Forestry, and Other Land Use | | | 6.4- Periodicals, Web sites, ... etc | Course | coo | rdinator: | | | |--------|-------|-----------|--|--| | Head o | of De | partment: | | | | Date: | / | / | | | 7- Facilities required for teaching and learning | Specialization Module: Land Use Planning and Assessment | |---| | Elective Course: Modeling of Land Use Changes | | | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Land Use Planning and Assessment Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Modeling land Use Changes Code: SLM 14738 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 ## **B-** Professional Information #### 1 – Overall aims of course Continual, historical, and precise information about land use/cover changes of Earth's surface is extremely important for any kind of sustainable development program, where land use/cover serves as one of the major input criteria. As a result, the importance of analyzing, monitoring, and mapping of land use/cover and its change as well as updating it through time has been acknowledged by various research workers. Modeling of land use/cover change is an advanced course on the use of satellite remote sensing to monitor land use and land cover change. The course emphasizes digital image processing techniques to detect landscape dynamics using remote sensing data. Topics include pre-processing data for change detection, accuracy assessment of change maps, and methodologies to detect changes such as urban expansion, desertification, deforestation, seasonal variations in vegetation, agricultural expansion, and vegetation health. ### 2 – Intended learning outcomes of course (ILOs) - Understand the main Remote Sensing Systems and programs (sensors, platforms, etc.) and assess their potential to land use/cover change monitoring. - Demonstrate an understanding of how satellite data can provide spatial information for land use/cover change modeling and consequently for sustainable land management. - Design and implement methods of digital image processing ranging from preprocessing to image classification, and accuracy assessment for the identification of land use inventories. - Skill to use change detection techniques for land use/cover change modeling. Demonstrated ability to plan and conduct projects in the area of land use/cover change modeling for sustainable land management Keywords: Land use change detection, land use and land cover classification systems, satellite image classification, land use models #### 3- Contents ### Topic Week 1: Introduction to land use/cover change analysis Week 2: Land use and land cover classification systems (Anderson 1967, FAO LCCS 2015, CLUE 2010, ect. ...) Week 3: Analytic Hierarchy Process (AHP) Week 4: Remote sensing Data collection tools, handling and manipulation Week 5: Top-down and bottom-up dynamics in land use Week 6: Impacts of land use and land cover changes Week 7: Vegetation spectral indices Week 8: Urban (non-vegetation) and water spectral indices Week 9: Image classification and change detection techniques Week 9: Land use models and how to select suitable one Week 10: GIS as a land use modeling tool Week 11-12: Case Studies and students discussions ### 4- Teaching and learning methods - Discussion - Presentation - Midterm exam - Problem Assignment - Project Assignment - Final exam #### 5- Student assessment methods ## Weighing of assessments | Mid-term examination | 10% | |------------------------|------| | Final-term examination | 60% | | Oral examination | 10% | | Practical examination | 15% | | Semester work | 5% | | Total | 100% | | | | #### 6- List of references - Natural Resources Canada: Fundamentals of Remote Sensing. accessed December 2016. http://www.nrcan.gc.ca/node/9309 - Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., and Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing 25 (9), 1565–1596. - Eastman, R. J. (2006). IDRISI Andes: Guide to GIS and image processing. Worcester, MA: Clark Labs, Clark University. - ERDAS. (2007). ERDAS imagine professional: Tour Guides. Norcross, GA: Leica Geosystems Geospatial Imaging, LLC. - Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989e1003. - Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365e2407. - Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition. Prentice-Hall, Upper Saddle River, NJ. - Abd El-Kawy, O.R., J.K. Rød., H.A. Ismail and A.S.Suliman (2011). Land Use and Land Cover Change Detection in the Western Nile Delta of Egypt using Remote Sensing Data. Applied Geography, 31; 483-494. - European Communities. 2001. Manual of concepts on land cover and land use information systems. Luxembourg: Office for Official Publications of the European Communities - European Communities. 2007. INSPIRE Infrastructure for Spatial Information in Europe Data Specification on Land Use Technical Guidelines. European Commission Joint Research Centre. - FAO. 2016. Land Cover Classification System software V3. FAO, Rome. | Course coor | dinator: | | | | |-------------|----------|------------|--|--| | Head of Dep | partment | : : | | | | Date: / | / | | | | | Specialization Module: Land Use Planning and Assessment | |---| | Elective Course: Land Use Policies and Legislations | | | | | | | **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Land Use Planning and Assessment Department offering the program: Soil and Water Sciences **Department offering the course:** Soil and Water Sciences – Civil Law (Faculty of Law) Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Land Use Policies and Legislations Code: SLM 14739 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 ## **B-** Professional Information #### 1 – Overall aims of course This course outlines the relationship between land use policies and legislations as affects the social and environmental aspects of the community. Topics covered in the course will include Egypt environment law, national laws related to pesticides use, farming, water use in agriculture, Agricultural incentive, and use of wastewater in agriculture. Students will be encouraged to think critically and creatively about
the applications of these laws and their role in orchestrating the different uses of agricultural practices. ### 2 – Intended learning outcomes of course (ILOs) The student will be introduced to the different laws and policies related to different agricultural activities and practices, as well as the water crisis in the world. ### 3- Contents #### Topic Week 1: introductory note about agricultural policies Week 2: Egypt Sustainable development strategy until 2030 Week 3-4: Egypt sustainable agricultural development strategy until 2030 Week 5-6: Egypt environment law 4 – 1994 and its amendments Week 7: Egypt land reclamation strategy Week 8: Egypt water resource management strategy Week 9: Agricultural reform in Egypt Week 10: Pesticides use and regulation laws Week 11: Farming and nursery laws Week 12: Case Studies ## 4- Teaching and learning methods - 4.1-Discussions - 4.2-Seminars - 4.3-Case studies - 4.4-Presentations ### 5- Student assessment methods 2000 word essay – 'critically examine the relationship between different agricultural policies and legislations ## Weighing of assessments | Mid-term examination | 20% | |------------------------|------| | Final-term examination | 70% | | Oral examination | 10% | | Total | 100% | ## Any formative only assessments ## 6- List of references ### 6.1- Course notes Hand-outs will be distributed weekly to the sdudents ### 6.2- Essential books (text books) Local laws related to agriculture and water use in Egypt. ### 7- Facilities required for teaching and learning Computer lab – Internet - ### **Course coordinator:** ## **Head of Department:** Date: / Specialization Module: Environmental Soil and Water Resources Management Elective Course: Advanced Soil and Water Pollution and Remediation **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Environmental Soil and Water Resources Management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Advanced Soil and Water Pollution and Remediation Code: SLM 14740 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 ## **B-** Professional Information #### 1 – Overall aims of course This course will examine current interdisciplinary topics on soil and groundwater pollution and their remediation. Topics include: environmental pollutants and their types and sources in the environment, pathways to contaminate soils and groundwater, impacts on the environment, fates and transport in soils, and remediation, vulnerability and risk assessment of soil and groundwater pollution, and selected case studies on soil and groundwater pollution with various pollutants. Development and application of new remediation technologies of contaminated soils and groundwater will be the focus of this course. ### 2 – Intended learning outcomes of course (ILOs) - t- Knowledge and understanding: - a1- Know different types and sources of pollutants in soils and groundwater. - a2- Identify different environmental impacts of soils and groundwater pollution. - a3- Explain pathways of different pollutants in the environment. - u- Intellectual skills: - b1-Classify remediation techniques of polluted soil and groundwater resources. - b2-Design a strategic monitoring plan of soil and water resources. - b3-Assess the vulnerability and risk of groundwater to pollution with different pollutants. - v- Professional and practical skills: - c1-Show the behavior and dynamics of different pollutants in soils and groundwater. - c2-Illustrate the governing processes and factors controlling transport and fate of pollutants in soil and groundwater. - c3-Examine the obtained data of groundwater pollution risk assessment. - c4- Calculate parameters related to sorption, degradation and transport of pollutants in soils ### w- General and transferable skills: - d1-Use the computer capabilities of editing reports, presentations and calculations. - d2- Communicate with different agencies and labs concerned with environmental soil and water issues. ### 3- Contents | Week
No. | Торіс | |-------------|--| | 1 | Review of types, sources and environmental impacts of contaminants of soils | | | and groundwater resources. | | 2 | Heavy metals and radionuclides in the soil system: Speciation, biochemical effects and bioavailability and uptake by plants. | | 3 | Pollution mechanisms and soil-pollutants interaction: Physical processes and mechanisms of pollution (Adsorptive & Non-adsorptive)- pollutants transport (Microscopic & Macroscopic dispersion)- Behavior of Non-Aqueous Phase Liquids (NAPLs) in Soils. | | 4 | Pollutants' alteration, transformation, and initiation of chemical changes within the soil: Chemical mobility, Dissolution-precipitation, Chemical transformation processes, Biodegradation, enzymatic and biologically supported transformations. | | 5 | Monitoring of soil pollution: monitoring procedures and plans, Field and laboratory investigations, Biological monitoring. | | 6 | Planning and realization of soil remediation- Categories of pollutants- scale of pollution- Risk level- Soil remediation technologies (Chemical and physical remedial techniques, Biological treatment, Solidification/Stabilization methods & Thermal treatment). | | 7 | Review of groundwater systems- Physical properties- Different types of groundwater systems- Geological, Physical and hydraulic properties of different types of aquifers Chemical properties, redox geochemistry, microbiology. | | 8 | The concept of groundwater quality- Natural degradation of groundwater quality- Point and nonpoint sources of pollution- Contaminants in groundwater (Heavy metals, veterinary drugs and hormones, pesticides). | | 9 | Pollutants in groundwater environments: Phase partitioning, sorption, evaporation, Plumes in groundwater, Dispersion & retardation, Understanding transport and dissolution, Redox reactions and | | | biodegradation, Monitored natural attenuation, Quantification and | | | | | | |----|--|--|--|--|--|--| | | degradation pathways of pollutants using stable isotopes | | | | | | | 10 | Evaluation of groundwater vulnerability to pollution using DRASIC model: | | | | | | | | Hydrologic settings, Factors affecting pollution potential, Assignment of factor | | | | | | | | weightings, Testing the model and displaying the system, Coupling of GIS and | | | | | | | | DRASTIC model- Problems. | | | | | | | 11 | Risk assessment of groundwater pollution: Fundamental concept of pollution | | | | | | | | risk, Organizational basis for risk assessment, Characterization of subsurface | | | | | | | | contaminant load, Estimation of point and nonpoint-source pollution, | | | | | | | | implementation of risk assessment- Demonstration of a study case. | | | | | | | 12 | Groundwater remediation using active and passive processes: The basics of | | | | | | | | pump-and-treat systems, The basics of permeable reactive barrier (PRB) | | | | | | | | systems, Cost comparison between pump-and-treat and PRB systems, | | | | | | | | Engineering of permeable reactive barriers- Case studies. | | | | | | | 13 | Oral and Practical Exams | | | | | | | 14 | Final Exam | | | | | | ## 4- Teaching and learning methods - 4.1. Lectures. - 4.2. Group discussion. - 4.3. Assignments. - 4.4. Seminars. - 4.5. Case study. ### 5- Student assessment methods 5.1. Case study report **to assess** comprehensive thinking and criticism. 5.2. Oral exam **to assess** self confidence, interaction and presentation skills. 5.3. Practical exam **to assess** connecting theoretical with application and practices. 5.4. Written exam **to assess** understanding of key concepts and relationships. ### Assessment schedule Assessment 1: Case study report Week: 7 Assessment 2: Oral exam week: 13 Assessment 3: Practical exam Week: 13 Assessment 4: Written exam Week: 14 ## Weighing of assessments | Mid-term examination | 10% | |---------------------------|------| | Final-term examination | 40% | | Oral examination | 10 % | | Practical examination | 20% | | Semester work | 10% | | Other types of assessment | 10% | Total 100% ### Any formative only assessments ### 6- List of references #### 6.1- Course notes Handouts and electronic lecture notes and power point presentation will be provided. ### 6.2- Essential books (text books) - Mirsal, I. A. (2008) Soil Pollution: Origin, Monitoring & Remediation. 2nd Ed. Springer-Verlag Berlin Heidelberg, Germany. - Berkowitz, B., I. Dror, and B. Yaron (2008) Contaminant Geochemistry: Interactions and Transport in the Subsurface Environment. Springer-Verlag Berlin Heidelberg, Germany. #### 6.3- Recommended books Foster, S. and R. Hirata (1995) Groundwater Pollution Risk Assessment. Pan Am. Center Sanitary Eng. Lima, Peru. #### 6.4- Periodicals, Web sites, ... etc - Aisopou, A., P. J. Binning, H. Albrechtsen and P. L. Bjerg (2015) Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells. GROUNDWATER. 53: 722–736 - Baloch, M. A. and L. Sahar (2014) Development of a Watershed-Based Geospatial Groundwater Specific Vulnerability Assessment Tool. GROUNDWATER. 52: 137–147. - Evaluation Report TE-97-01. Carnegie Mellon University, Department of Civil and Environmental Engineering. Pittsburgh, PA - Kim, Y.-J., C.J.G. Darnault, N.O. Bailey, J.-Y. Parlange, and T.S. Steenhuis. (2005) An equation for describing solute transport in field soils with preferential flow paths. Soil Sci. Soc. Am. J. 69, no. 2: 291–300. - Sims, J.L., R.C. Sims, and J.E. Matthews (1989) Bioremediation of
Contaminated Surface Soils. EPA Environmental Research Laboratory. Report No. 800/9-89/0/3 - Trisha B. Johnson, Larry D. McKay, Alice C. Layton, Sidney W. Jones, Greg C. Johnson, Jennifer L. Cashdollar, Daniel R. Dahling, L., F. Villegas, G. S. Fout, D. E. Williams and G. Sayler (2011) Viruses and Bacteria in Karst and Fractured Rock Aquifers in East Tennessee, USA. GROUNDWATER. 49: 98–110. #### 7- Facilities required for teaching and learning Laptop - Data show - VIS/UV Spectrometer- Various chemical analysis lab facilities. | Course coor | dinator: | |-------------|-----------| | Head of De | partment: | | Date: / | / | Specialization Module: Environmental Soil and Water Resources Management Elective Course: systems Approach to Water Resource Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Environmental Soil and Water Resources Management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Systems Approach to Water Management Code: SLM 14741 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 ## **B-** Professional Information **1 – Overall aims of course**: By the end of this course the student should be able to: - Diagnose surface and ground water resources at different spatial and temporal scales; - Construct water resources protection plans and - Plan sustainable water resources management strategies. ### 2 – Intended learning outcomes of course (ILOs) #### x- Knowledge and understanding: - a1- Describe the hydrological water cycle; - a2- Identify surface and ground water resources characteristics and - a3- Discuss the appropriate technical measures to improve water management at different spatial and temporal scales. ### y- Intellectual skills: - b1- Investigate the expected performance of the proposed water management measures and analyze these at (i) field/farm level and (ii) watershed level and - b2- Compose water management issues into research topics that are conceptually and methodologically grounded. ### z- Professional and practical skills: c1- Design intervention water management plans in a professional manner. #### aa- General and transferable skills: d1-Provide an education suitable for a wide variety of careers in the environment following graduation #### 3- Contents In comparison with other natural resources, water resources are a very special nature and essentially unique, as they do not have any substitute and their presence is a necessary condition for human existence and the development of any kind of life on earth. Therefore, Understanding the character, occurrence, and movement of water recourses to achieve sustainable management strategies at spatial and temporal scales is the main goal of this course "System approach to water management". Students must have some background in all aspects of the hydrologic cycle. They are concerned with precipitation, evaporation from open surfaces, evapotranspiration from ground, surface water, seepage, infiltration, ground water, aguifers and saltwater encroachment. Readers interested in one of these topics will find a comprehensive treatment of the subjects in the literature. Although we have attempted to provide a broad interdisciplinary coverage of the interaction between surface water and ground water principles taking into consideration the different historical background of the attendants; Agronomy, Engineering, environment, and soil and water sciences. Thus the course is designed to be accessible to a variety of attended graduate students. From the practicality point of view, it was not possible to include detailed information on the technical aspects of ground water such topics as well pumps, ground water sampling methods, procedures for chemical analysis of ground water and also the simulation models of ground water. The principles of these practical and important techniques and different models are discussed in detailed in the relevant literature. The objective of this course lectures is to provide a brief presentation on the general topics associated with water management. An appropriate conjugated connected illustrative figures with numerical examples are also presented, in hopes of reducing stress and panic the first few times performing a new task. | Topic | No. of Hours | Lecture | Practical/Tutorial | |--|--------------|---------|--------------------| | A- Water resources | 8 | 4 | - | | B- Hydrological structures | 4 | 2 | - | | C- Modeling of water resources systems | 8 | 4 | - | | management | | | | | D- Case studies of on system approach | 4 | 2 | - | | of water resources | | | | # 3.1- Tentative Timetable for the course: | Topic No. | <u>Subjects</u> | | | | |-----------|---|--|--|--| | Topic A | Week 1: Introduction in water resources management. An overview of | | | | | | water management issues. | | | | | | Surface water: Hydrological cycle; precipitation; surface water bodies such | | | | | | as rivers, lakes and reservoirs; infiltration; evapotranspiration; recharge; | | | | | | and surface runoff. | | | | | | Week 2-3: Ground water: Ground water occurrences; source of ground | | | | | | water; factors controlling ground water; water bearing properties of soils | | | | | | and rocks; type of aquifers; ground water flow; functions of ground water | | | | | | systems; ground water exploration; aquifer performance test; saltwater | | | | | | encroachment; well-acceptance tests and well efficiency. Application of | | | | | | Darcy's law in ground water flow: Case1: horizontal flow; Case2: | | | | | | horizontal flow. | | | | | | Week 4: Precipitation and conveying system: Measurement of rainfall; | | | | | | rainfall harvesting; roof water harvesting; water harvesting by ponds. | | | | | | Conveying system network; designing open channels; measuring devices | | | | | | for water quantities. | | | | | | Virtual and sweet water: The concepts of water footprint and virtual | | | | | | water; Strategic issues; Specific water demand per crop type per country; | | | | | Topic B | Global trade in virtual water. Sweet water: Artificial rain; affordable | | | | | | desalinization. | | | | | | Week 5-6: Hydrological structures: Percolation tanks; Check dams; Aquife | | | | | | storage recovery wells. | | | | | | Week 7: Applied system analysis: What is system approach? | | | | | | Types of models (mathematical and simulation) | | | | | | Methods of water resources system management: Simulation- optimization- | | | | | Topic C | multi-objective analysis | | | | | | | | | | | | | | | | | | Week 8-9: Water management under uncertainty approach (Fuzzy | | | | | | models) | | | | | | Water resource system management for sustainable development | | | | | | Principle, fairness, risk and reversibility of sustainable water resource decision-making | | | | | | decision-making | | | | | | Week 10: Implementation of water resource management tools using | | | | | | simulation, optimization and multi-objective | | | | | | Week 11: Case study 1. rain water harvesting in North West Coast: Open | | | | | | discussions and conclusion | | | | | | | | | | | Topic D | Week 12: Case study 2. Irrigation water management in the Nile Delta: Open | | | |---------|--|--|--| | | discussions and conclusion | | | ### 4- Teaching and learning methods - 4.1- Class Participation - 4.2- Frontal lectures - 4.3- Microteaching - 4.4- Home reading and assignments - 4.5- Discussion sessions - 4.6- Course website #### 5- Student assessment methods - 5.1 Exercises are useful to assess the skills of solving problems and presenting data and discussion; - 5.2 Midterm exam is useful to assess the skills of understanding the scientific background of the material studied in the program; - 5.3 Case study presentation is important to assess the skills of ensuring academic integrity; - 5.4 Oral exam is useful to assess the skills of engaging in oral communication on a familiar topic covered by the class syllabus and probing of the students' knowledge and - 5.5. Final exam is useful to test the students' knowledge and understanding of a topic, as well as their ability for application, analysis, integration and synthesis. ### **Assessment schedule** | | Assessment 1 Exercises | | Weeks: 2 ¹¹⁰ ,5 ¹¹¹ ,7 ¹¹ ,9 ¹¹ ,11 ¹¹ , | |-----|-------------------------------|----------|---| | and | 12 th . | | | | | Assessment 2 Midterm exam | | week: 7 th | | | Assessment 3 Case study prese | entation | Week: 12 th | | | Assessment 4 Oral exam | | Week: 13 th | | | Assessment 5 Final exam | | Week 14 th | | Wei | ghing of assessments | | | | | Exercises | % 15 | | | | Midterm exam | % 15 | | | | Case study presentation | %15 | | | | Oral exam | % 15 | | | | Final exam | % 40 | | | | Total | % 100 | | #### 6- List of references #### 6.1- Course notes Course handouts in a PDF format for different topics will be available for students. ### 6.2- Essential books (text books) **Patel**, A.S. and Shah, D.L.2008. Water management. New Age International Limited, New York, USA, 2008. #### 6.3- Recommended books - Anderson, M.P., and Woessner, W.W.1992. Applied Ground water Modeling: Simulation of - flow and advective Transport. Academic Press, San Diego, CA. - **Arora,** K.R. 2002. Irrigation, Water Power and Water Resources Engineering. Standard Publishers Distributors. NAISARAK, DEIHI. - **Ghosh,** S.N., and Desai, V.R. 2006. Environmental Hydrology and Hydraulics. Published by Science publishers, Enfield, NH, USA. - **Glover**, J., and Mc Culloch, J.S.G. 1968. The
empirical relationship between Solar radiation and hours of sunshine. Q.J.R. Meteorol. Soc. 82: 172 175 ### 6.4- Periodicals, Web sites, ... etc A course web site that will be constructed in the near future is the main website for the class ### 7- Facilities required for teaching and learning - Computers and internet - Video films - Field visits - Data-show Course coordinators: Gaber M. Hassan, Ph. D. Rasha M. Badr, Ph. D. **Head of Department:** Date: / Specialization Module: Environmental Soil and Water Resources Management Elective Course: Socioeconomic Aspects of Water Resource Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Environmental Soil and Water Resources Management Department offering the program: Soil and Water Sciences Department offering the course: Agricultural Economics Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Socioeconomic Aspects of Water Resource Management Code: SLM 14742 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 ## **B-** Professional Information #### 1 – Overall aims of course This course is designed to offer materials that can be applied in assessing water resource allocation problems and the socioeconomic aspects of water resource management. It displays an economist's perspective about the allocation of water resources, and other related topics. In this course, the prospective graduate student heading for a Master's degree in sustainable land management (SLM) is introduced to water resources, law, and resource economics concepts. Economics is of critical importance in determining the allocation of water; namely, where water flows and how and when it is stored. The course also introduces the student to solving the problem of how society can try to make water move from one place to the another, especially when this another place is not a natural place for water to end up. This course also shows how economics also plays a role in determining existing level of water quality for many water bodies, because society engages in certain economic activities that are polluting, and then must decide whether and how much of this pollution to clean up, given the cost of doing so. The course of is a special significance to the Master's degree in SLM as water constitutes the largest portions of land resources. Course Keywords: Physical Scarcity, Water Flows and Stocks, Water Balance Models, Water Supply, Water Law, The Water Market, Market Failures and Externalities, Discounting and Uncertainty, Transactions Costs, Water Quality, Control Cost Analysis, Benefits Analysis, Water Prices and Rates, Elasticities, Water Factor Demand, Water Values, Modelling Irrigation Technologies, Market-Based Incentives, Supply and Demand Uncertainties for Water, Groundwater, Environmental and Recreational Values. ### 2 - Intended learning outcomes of course (ILOs) bb-Knowledge and understanding: - a1- Identify the roles each entity in the economy plays within the water institutional, economic, and social framework and settings. - a2- Explain how and why economists perceive water as a matter of peculiar nature. - a3- Describe how economics can affect the allocation, movement, and utilization of water resources. #### cc- Intellectual skills: - b1- Decide on policies within the water institutional, economic, and social setting. - b2- Investigate how to analyze the different utilization of water resources in a socioeconomic framework. - b3- Assess the socioeconomic factors impacting water-quality management practices. ### dd-Professional and practical skills: - c1- Examine designs implemented for economic assessment of water resources policies. - c2- Illustrate issues related to water management and its sustainability. ## 3. Course Contents ### Contents Week 1: Introduction to water resources economics and law - Earth's water supply, physical scarcity, water flows and stocks, water balance models, water supply and runoff, types of human water use, unnatural moving of surface water, water law, Economics, markets, and water resources. Week 2: Review of basic microeconomics applied to water resources - Part 1 - consumer theory, price-elasticity of demand, production, cost functions, constrained optimization. Week 3: Review of basic microeconomics applied to water resources - Part 2 consumer's surplus, supply side of water, producer's surplus and shadow prices, water markets, efficient allocations, Pareto criterion, market failure and water, externalities in consumption, discounting: the farmer, water value, and uncertainty, water markets and transactions laws. #### Week 4: Water quality issues - valuation of water quality improvement, assessing economic success or failure of water quality legislation, control cost analysis, benefits analysis. ### Week 5: Water prices and rates for residential use - The supply side, the water utility as regulated monopolist, the natural monopoly, rates and residential water supply, purpose and types of rates, embedded cost rate structure, rating alternatives, the demand side, elasticities, municipal water supply. ### Week 6: Water and agriculture Water as factor demand, approaches to finding the value of water, uncertainty, government intervention, modeling production and irrigation technologies, empirical application of agricultural production models, estimated value of water in agriculture, water quality in agriculture, economic solutions and market-based alternatives, market failures, uncertainty and agriculture, uncertainty and expected profit, the farmer as speculator or investor. ## Week 7: Uncertainty and risk in supply and demand of water resources - Demand and supply under uncertainty, consumer demand, the expected utility model, demand for water in the context of risk, factor demand under uncertainty, supply under uncertainty, risk premiums, futures markets and forward contracting, water's allocative efficiency under risk. #### Week 8: Groundwater - Meaning of groundwater, managing or mining groundwater, groundwater as a common property resource, valuing groundwater, groundwater's future. ### Week 9: In situ uses of water: Environmental and recreational uses - Water-based recreation, quality changes and recreation, non-market valuation applied to water, water-based values and recreation, *In situ* or instream flow value estimates. Case studies. ### Week 10: Floods and droughts and the role of dams economic damages of floods, costs and benefits of flood control, market failure and the optimal provision of flood control, drought impacts, the water bank game, case studies ### Week 11: Water issues in the developing countries Economic problems in developing and low-income countries, violent conflicts and the potential for more in the future, economic reform, water markets and water pricing. ### Week 12: Summary, suggestions for future work, and conclusions Water transfers, markets, and water law, uncertainties, economic analysis in developing countries. ### 4- Teaching and learning methods - 4.1- Lectures using PowerPoint Presentations. - 4.2- Comparative Case Study Analysis for water management in the developed and the developing world. - 4.2- Homework Assignments - 4.3- Searching scientific articles which handle the socioeconomics aspects of water resources in different parts of the world. Critical analysis of some articles is to be made. #### 5- Student assessment methods - 5.1 Oral to assess the skills of analyses and discussion. - 5.2 Case study analysis to assess the skills of problem solving and data presentation and discussion. - 5.3 A midterm exam to evaluate the progress of students in the middle of the semester. - 5.4 A written final exam to assess the student's overall understanding of the main concepts of the course. ### **Assessment schedule** Assessment 1: Midterm Exam – Week 7 Assessment 2: Oral Exam – Week 13 Assessment 3: Case Study - Week 6 till 10 Assessment 4: Final Exam - Week 14 ### Weighing of assessments Mid-term examination: 10% Final-term examination: 50% Oral examination: 10% Homework and case study analysis: 30% Total: 100% ### 6- List of references ### 6.1- Course notes - All electronic notes are to be sent to students by e-mails or through the creation of a website to the students on Facebook or any other website. ### 6.2- Essential books (textbooks) Shaw, Douglas W. Water Resource Economics and Policy: An Introduction. Edward Elgar Publishing Limited, Cheltenham, UK – Northampton, MA, USA. 2005. ISBN 1 84376 917 4 (cased). #### 6.3- Recommended books Ronald C. Griffin. Water Resource Economics: The Analysis of Scarcity, Policies, and Projects. ISBN: 9780262072670. 2005 Walter Lukenga. Water Resource Management. <u>www.bookboon.com</u> 1st Edition. ISBN 978–87-403-0978-2. 2015. ## 6.4- Periodicals, Web sites, ... etc. Determination of a number of research articles written on the socioeconomic aspects of water resources is to be made. Research articles are mostly found on the following link: http://ageconsearch.umn.edu/. This is a scientific research link associated with the University of Minnesota, Twin Cities, USA, Department of Applied Economics. ## 7- Facilities required for teaching and learning - Computer - Data Show. |
~ - | | ator: | |----------------|--|-------| | | | | **Head of Department:** Date: / / Specialization Module: Environmental Soil and Water Resources Management Elective Course: Sustainable Soil Fertility Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Environmental Soil and Water Resources Management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Sustainable Soil Fertility Management Code: SLM 14743
Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 ## **B-** Professional Information #### 1 – Overall Aims of Course This course will provide an advanced sustainable management of soil fertility as it relates to plant nutrients and soil fertility, plant nutrient use and environment, soil fertility problems; challenges and responses at the farmer's level, modelling yield response to added nutrients in farming systems, and computer based diagnostic soil fertility tools. Students are expected to gain an understanding of the principles and practices of nutrient requirements and management for crop production and the implications of soil fertility management practices on agricultural sustainability and environmental protection. Moreover, the course is organized in a foreword three main subjects. Part I: aims at integrating aspects controlling availability of nutrient to plant uptake in the soil/plant/nutrient system and their interrelationships and interaction. Part II: aims at optimization of fertilizer use through applying scientific bases and calculations and integrating organic matter application. And Part III: treats the relationships between mineral nutrition and balance between economic production-food quality-environmental risks. Case studies and practical parts of this course are designed to strengthen the theoretical part. ### 2 - Intended Learning Outcomes of Course (ILOs) - e- Knowledge and Understanding: - a1- Explain What soil fertility means and what makes a soil fertile and productive. - a2- Identify soil nutrient problems and opportunities. - a3- Describe the plant nutrient balance system. - a4- list benefits of integrated nutrient management system. - f- Intellectual Skills - b1- Demonstrate how mineral nutrients influence plant growth and understand the importance of nutrient placement and management in various soils and plant production systems. - b2- Apply a participatory approach to designing and implementing an integrated nutrient management program. - b3- Propose methodologies and tools to assess suitability, economic feasibility, and impacts of Integrated Soil Fertility Management (ISFM) on agricultural production, soil fertility, and the environment. - b4-Propose fertilizer recommendations that are agronomically efficient, environmentally sustainable, and economically profitable. - g- Professional and Practical Skills - c1- Apply modeling yield response to added nutrients. - c2- Evaluate sources and flows of nutrients in farming. - c3- Practice nutrient flow analysis. - c4- Use computer based diagnostic soil fertility tools. - h- General and Transferable Skills - d1- Communicate and present soil fertility idea, principles and theories through written, oral and visual means. - d2- Evaluate approaches to problem-solving related to soil fertility. - d3- Develop skills in communicating tasks within a group setting, take part in group discussions and co-operative learning. #### 3- Contents | weeks | topics | | | | |-------|---|--|--|--| | 1-2 | Introduction to soil fertility, | | | | | | Essential nutrients, Plant-soil-nutrients interrelationship; | | | | | | Processes affecting nutrient availability. Soil chemical, physical, | | | | | | biological properties affecting availability-processes. Plant factors | | | | | | affecting availability-processes. | | | | | | How to manage processes towards more ecological use of a nutrient? | | | | | 3 | Diagnostic techniques for nutritional disorders (soil fertility evaluation) | | | | | | Soil and plant tests for nutrients and their interpretations. | | | | | | Soil constituents as modifiers for soil test interpretation. | | | | | | Case study I. available or published data (reports) | | | | | 4 | Case study II. Field trip, soil and plant sampling | | | | | 5-6 | Scientifically based fertilizers recommendation | | | | | | Based on soil test | | | | | | Based on soil budget | | | | | | Based on both soil and plant test (fruit crops) | | | | | 7-8 | High vs. low agriculture inputs | | | | | | Over fertilization and nutrient unbalance | | | | | | Nutrient mining and consequence effects | | | | | | Nutrient deficiency symptoms and correction | | | | | | Case studies (reports) | | | | | 9-10 | Integrated Nutrient Management (INM) and Best Management Practices (BMP) | | | | | |-------|--|--|--|--|--| | | Goal of INM and BMP | | | | | | | Nutrient application, conservation, cycling and alternative sources | | | | | | | Nutrient use efficiency by crops and cropping systems. | | | | | | | Models creations through discussion groups and home work | | | | | | 11 | Site specific soil fertility management. | | | | | | | Case studyII, fertility status-, recommendation-, and yield- mapping | | | | | | | (variable rate technology and GIS as tool). | | | | | | 12-13 | Mineral nutrition (MN) vs human health and environmental risks | | | | | | | MN vs food quality | | | | | | | MN vs. plant diseases | | | | | | | MN vs. environmental risk | | | | | | | How to manage nutrients with care? | | | | | | 14 | Student's presentations for both case studies. | | | | | | 15 | Final exam | | | | | ## Case study and Lab work. | week | Activity | |-------|---| | 1-2-3 | | | 4 | Field trip, soil and plant sampling | | 5 | Soil and plant samples preparation for analysis | | 6 | EC, organic matter, CEC determinations | | 7-8 | Available nutrients in soil | | 9-10 | Plant analysis for nutrient content | | 11-13 | Data analysis and reporting | | 14 | Project presentations | ### 4. Teaching and Learning Methods - 4.1. Mini lectures, - 4.2. Team work, problem solving and consultation, - 4.3. Watching educational videos or/and accessing web sites searching for specific information, - 4.4. homework/assignment, - 4.5. Interacting with instructors or classmate (e-mail, new groups and browse documents). - 4.6. Hands-on experience during the laboratory time. #### 5- Student Assessment Methods 5.1. Group Assignments to assess written communication, time management, teamwork, problem solving, and IT skills 5.2. Oral exam and presentation to assess oral communication skill 5.3. Written exam to assess knowledge and intellectual skills 5.4. Research paper to assess self learning and practical skill #### **Assessment Schedule** Assessment 2: Midterm exam Week 6th Assessment 3: Oral exam Week 11th Assessment 4: research paper presentation Week 12th Assessment 5: Final exam Week 13th ### **Weighting of Assessments** | Mid-term Examination | 10% | |---------------------------|------| | Final-term Examination | 60% | | Oral Examination. | 10% | | Research Paper | 10% | | Semester Work | 05% | | Other types of assessment | 05% | | Total | 100% | #### **6- List of References** #### **6.1- Course Notes** Environmental Management of Soil Fertility (Hand-out) ### 6.2- Essential Books (Text Books) Havlin, J.L.; J.D. Beaton; S.L. Tisdale and W.L. Nelson. 1999. Soil Fertility and Fertilizers. An Introduction to Nutrient Management. Sixth edition, Prentice Hall, New Jersey, USA. #### 6.3- Recommended Books - 1. Foth, H.D. and B.G. Ellis. 1996. Soil fertility. John Wiley and Sons, New York. - 2. Marschner, Horst. 1995. Mineral nutrition of higher plants (2nd Edition). Academic Press Inc. San Diego, CA, USA. - 3. Mengel, K. and E.A. Kirkby. 1987. - Principles of plant nutrition (4th Edition). International Potash Institute, Worblaufen-Bern, Switzerland. - 4. Prasad, R. and J.F. Power. 1997. - Soil fertility management for sustainable agriculture. CRC Press LLC, Lewis Publishers, Florida, USA. - 5. Rodriguez-Barrueco. 1994. - Fertilizers and Environment. Kluwer Academic Publishers, The Netherlands. - 6. Westerman, R.L. 1990. - Soil testing and plant analysis (3rd Edition). Soil Science Society of America, Inc., Madison, WI. - 7. T. Defoer, A. Budelman, C. Toulmin, S. Carter, J. Ticheler, 1998. Soil fertility management in Africa: A resource guide for participatory learning and action research. A KIT Publication, Amsterdam, The Netherlands. #### 6.4- Periodicals, Web Sites, ... etc - Soil Fertility Management http://agguide.agronomy.psu.edu/CM/Sec2/Sec2toc.html - Michigan State University's CSS 430: Soil Fertility and Chemistry - http://www.css.msu.edu/css430/ Worldwide Portal to Information on Soil Health - http://mulch.mannlib.cornell.edu/browse.html • Guidelines and manuals (FAO's AGL Division) - http://www.fao.org/ag/agl/agll/farmspi/docs.stm#ffs-manual • Online documents on plant nutrition (FAO's AGL Division) - http://www.fao.org/ag/agl/agll/oldocsp.jsp • Soil biodiversity portal (FAO's AGL Division) - http://www.fao.org/ag/agl/agll/soilbiod/default.stm Online documents on Fertilizers, soil fertility, plant nutrition (AGNET) - http://www.agnet.org/library/list/subcat/E.html - Miscellaneous resources on soil fertility, acidity, alkalinity (AGRIFOR) http://agrifor.ac.uk/hb/5a12a57a48789740ed6e74f24fca59b2.html - International fertiliser industry association http://www.fertilizer.org/ifa/ - Integrated plant nutrition systems resource documents (FADINAP) - http://www.fadinap.org/ipns/index.htm Soil Fertility and Fertilizers (Open Directory) - http://dmoz.org/Science/Agriculture/Soils/Soil Fertility and Fertilizers/ • Soil: Fertility & Chemistry (Portal site) - http://homepages.which.net/~fred.moor/soil/links/l0102.htm - Soil Fertility Guide -http://www.gov.nf.ca/agric/pubfact/Fertility/FertiGuide.htm - Soil Information compiled by Dept. of Land Management, Universiti Putra Malaysia (Directory) -http://agri.upm.edu.my/jst/soilinfo.html - Natural Ressources Conservation Service: Soils http://soils.usda.gov/ -
Fertilizers and their efficient use http://www.fertilizer.org/ifa/publicat/PDF/introd.pdf - International Fertilizer Industry Association http://www.fertilizer.org/ifa/ Course Coordinator: Prof. Abdou Abdou Soaud Head of Department: Date: / / Specialization Module: Environmental Soil and Water Resources Management Elective Course: Alternative Agricultural Systems **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Environmental Soil and Water Resources Management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: ## A- Basic Information Title: Alternative Agricultural Systems Code: SLM 14744 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 ## **B-** Professional Information #### 1 - Overall aims of course This course provides a short history of agriculture which enables the students to gain a better understanding of the transitional development of the current agricultural systems. Considering the evolution of agriculture and the emergence of the modern systems that are so essential to the modern civilization. Studying the pros and cons of various strategies of alternative farming systems. Hence, this course is split into two inter-related parts, firstly an abridged history of agriculture is given, which acts as a foundation in order to appreciate the philosophies and backgrounds of current systems, particularly pre-existing 'organic' agriculture, and secondly the development of the 'conventional' and the 'alternative' schools of thought and their respective production systems. #### 2 – Intended learning outcomes of course (ILOs) a - Knowledge and Understanding: By the end of this course the student should be able to: - A.1. Summarizes the history of agriculture in the world. - A.2. Recognize Knowledge of alternative land use options - A.3. Identify of the field crops composition and programs of alternative land use in the agricultural policy of different regions. - A.4. List the pros and cons of various strategies of farming (conventional, integrated, low input, organic, precision, etc..). - A 5. Summarize the alternative land use systems, including the application of subsidies - A.6. Explain the designs of alternative management systems focused on the use of phytomass to produce food, energy and industrial raw materials - A.7. Determine the optimal management systems to maintain sustainability in alternative agricultural systems A.8. Write a list of standards of natural, chemical and biological soil under the alternative agricultural systems. #### b - Intellectual skills: - B.1. Uses the theories, models, concepts and principles in the field of alternative agricultural systems. - B.2. Collects, analyzes and summarizes the information in the field of alternative agricultural systems. - B.3. Analyze and interpret the observations and data of alternative agricultural systems. - B.4. Recognize and identify problems and propose and implement solutions, taking into account the environmental dimension. - B .5. Integrates and applies concepts and principles of alternative agricultural systems to another and linking them to environmental science. - B.6. Plans to set up an agricultural systems that coup with specific tasks. - B.7. Choose the most suitable service systems to maintain sustainability in the alternative agricultural systems. - B.8. Propose appropriate ways to modify the characteristics of the soil to reach out to a good quality C Professional and practical Skills: - C.1. Determine the soil, water and plant quality attributes using appropriate techniques. - C.2. Helps the farm to the adoption of a new agricultural system. - C.3. Design with good specifications appropriate techniques for alternative agricultural systems - C.4. Runs an alternative agricultural system for the production of safe food with the application of standards to preserve the environment. - C.5. Efficiently apply protocols of alternative agricultural systems ### D - General Skills (Transferable) - D.1. Use information technology to collect, interpret and display data for alternative agricultural systems. - D.2. Writes reports to interpret the results and make recommendations - D.3. Works within a team and share knowledge effectively. - D.4. Apply self-learning skills, time management and work order to determine the personal goals and academic and career development. - D.5.Communicate with professionals in different field of study - D.6. Make decisions, organize and plan ahead - D.7.design and managing projects #### 3 - Course Content: Theoretical content | Week | Subject | Source/s | |------|--------------------------|---| | 1 | The concept / the origin | Miller 2008: World Regional Trends in Agriculture | | | and development of | ftp://ftp.fao.org/docrep/fao/006/Y5160e/Y5160e04.pdf | | | world agriculture. | | | 2 | Patterns and the | Foley et al 2011: Solutions for a cultivated planet | | | foundations of | http://www.nature.com/nature/journal/v478/n7369/full/nature104 | | | conventional agriculture | 52.html | | 3 | Development of | Weil, R. R. 1990. Defining and using the concept of sustainable | | | sustainable agricultural | agriculture. J. Agron. Educ. 19:126-130. What Is Sustainable | | | |----|-----------------------------------|--|--|--| | | systems | Agriculture? | | | | | | http://www.sarep.ucdavis.edu/concept.htm#Top | | | | 4 | Conventional / Standard | Do industrial agricultural methods actually yield more food per acre | | | | | Agriculture vs. | http://grist.org/food/do-industrial-agricultural-methods-actually- | | | | | Conservation Farming | <u>yield-more-food-per-acre-than-organic-ones/</u> | | | | | | Organic versus conventional farming | | | | | | http://ec.europa.eu/agriculture/rica/pdf/FEB4_Organic_farming_fin | | | | | | al_web.pdf | | | | 5 | Organic Agriculture | Kristiansen, P. Taji, A. And Reganold, Jeds. | | | | | | Organic Agriculture. A global perspective. | | | | | | CABI (2006) | | | | | | http://base.dnsgb.com.ua/files/book/Agriculture/Organic- | | | | | | Agriculture/Organic-Agriculture.pdf | | | | 6 | Bio-Dynamic agriculture: | Biodynamic agriculture and organic farming | | | | | Principals, Design, pros | http://quantum-agri- | | | | | and cons | phils.com/Applying+Biodynamics+in+Organic+Seed+%20System.pdf | | | | 7 | Agroforestry: Principals, | World Agroforestry: | | | | | Design, pros and cons | http://worldagroforestry.org/sites/default/files/ICRAF%202011- | | | | | Biosaline Agriculture | 12%20annual%20report-29th%20August.pdf | | | | | | Biosaline Agriculture | | | | | | http://www.halophyte.org/pdfs/drkhan_pdfs/104.pdf | | | | 8 | Permaculture: Principals, | Essence of Permaculture - English - Permaculture Principles | | | | | Design, pros and cons | https://permacultureprinciples.com/wp- | | | | | Rhodale: Principals, | content/uploads//Essence of Pc EN.pdf | | | | | Design, pros and cons | Permaculture design fundamentals - Open Permaculture School | | | | | urban agriculture | https://www.openpermaculture.com/wp- | | | | | systems: garden, vertical, | content/uploads//permaculture-ebook.pdf | | | | | roof-top etc | Rodale's LaSalle on organic farming to mitigate global warming: | | | | | | http://www.eenews.net/tv/video_guide/796 | | | | | | Urban Agriculture | | | | | | https://sustainabledevelopment.un.org/content/documents/5764Ur | | | | | | ban%20Agriculture.pdf | | | | 9 | Precision agriculture: | The concept and implementation of precision | | | | | Principals, Design, pros | farming and rice integrated crop management | | | | | and cons | systems for sustainable production in the | | | | | Climate Smart | twenty-first century | | | | | Agriculture: Principals, | http://www.fao.org/3/a-a0869t/a0869t04.pdf | | | | | Design, pros and cons | Climate-Smart Agriculture Sourcebook - Food and Agriculture | | | | | | www.fao.org/docrep/018/i3325e/i3325e.pdf | | | | 10 | Evidence of physical, | Assessing Soil Quality | | | | | chemical, and biological | https://organic-center.org/reportfiles/SoilQualityReport.pdf | | | | | to the quality of the soil | | | | | | under alternative | | | | | | agricultural systems | | | | | 11 | Management systems for
the sustainable
agriculture .(crop
rotation. mulching –
green fertilization -
coverage) | Sustainable soil management http://soilslab.cfr.washington.edu/Watershed_Stewardship/Sustain_able_soil.PDF Agricultural sustainability: concepts, principles and evidence http://rstb.royalsocietypublishing.org/content/363/1491/447 | |----|---|--| | 12 | Managing Water and
Fertilizer for Sustainable
Agricultural
Intensification | http://www.iwmi.cgiar.org/Publications/Books/PDF/managing_wate_r_and_fertilizer_for_sustainable_agricultural_intensification.pdf?galog=no Best Management Guidelines for Sustainable Irrigated Agriculture http://www.saiplatform.org/uploads/Library/%23516- Bestmanagementguidelinesforsustainableirrigatedagriculture.pdf | ###
3-Practical content | Week | Subject | |------|---| | 1 | View and discuss the film of organic agriculture. | | 2 | Visit the organic farm and open discussion and writing the report. | | 3 | Visit the Egyptian Centre for Organic Agriculture and write the report of the visit | | 4 | Presentation and discussion of the film for biodynamic agriculture | | 5 | Determination of the rate of soil respiration lab | | 6 | Determination of organic carbon in the soil and compost. | | 7 | mid semester exam. | | 8 | Determination of carbon to nitrogen ratio in the compost | | 9 | Separation of the components of humus, compost | | 10 | Determination of available nitrate and ammonium in the soil. | | 11 | Extraction and assessment of phosphorus from organic fertilizers. | | 12 | Activity of compost and commercial bio fertilizer. | ### **4-Teaching and Learning Methods:** - 4.1- Active Lectures: power point presentation and blackboard. - 4.2- Term paper: selected Topics for student groups. - 4.3- laboratory projects - 4.4- Demonstrations - 4.5- Clarification Pauses - 4.6- Muddiest points - 4.7 Group discussion - 4.8 Seminar ### 5- Student Assessment attributes: | Assessment | Objective | Week | Degree % | |----------------|--------------------------------------|-----------|----------| | Assignment: | To assess the ability to work | Weekly | 3 | | | independently and discussion | | | | Homework: | To assess understanding | Weekly | 2 | | Term paper: | To assess the ability to work in | 3,6 and 9 | 12 | | | group to form subject from pieces | | | | Presentation : | To assess the ability to communicate | 5 and 10 | 8 | | | and discuss | | | | Internet report: | To assess IT skills | 3,6 and 9 | Combined with | |--------------------|------------------------------------|-----------|---------------| | | | | term paper | | Case study: | To assess the skills of Solve | 11 | 5 | | | problems, Present data | | | | Mid-Term exam | | 7 | 10 | | Oral exam: | To assess skill of analysis and | 11 | 5 | | | discussion | | | | Practical exam: | To assess the professional skills | 12 | 15 | | Final written exam | To assess the ability to remember, | ?? | 40 | | | understand, analysis, problem | | | | | solving skills | | | #### 6- List of References: #### 6.1. Course notes: Handout and hard copy of PP-presentations #### 6.2. Essential Textbook: Kristiansen, P. Taji, A. And Reganold, Jeds. 2006. Organic Agriculture. A global perspective. CABI ## 6.3 Recommended Readings: Miguel A. Altieri, "Agroecology, Small Farms, and Food Sovereignty," Monthly Review, 2009, download at: http://monthlyreview.org/author/miguelaaltieri S. D. Williams and Heidi Fritschel, "Farming Smarter," Insights, Vol. 2 no. 2, .Available at: http://ebrary.ifpri.org/cdm/singleitem/collection/p15738coll2/id/126967/rec/9 Ecomodernist Manifesto, download at http://www.ecomodernism.org Paarlberg, "Precision Agriculture: Can Small Farmers Participate https://www.thechicagocouncil.org/blog/global-food-thought/precisionagriculture-smallholders-paarlberg-harvard ### 7. Facilities Required for Teaching and Learning: Portable Thermometer with datalogger PC connected Portable CO₂-meter with datalogger PC connected Luxmeter - IR-Thermometer Computer and Data Show - internet Digital balance and UV-VIS Spectrophotometer Automatic pipettes, Automatic Digital Buretts, Dispensers | _ | | | | | |------------|-----|----------|------|--------| | (\cap) | rca | α | rdin | ator: | | LUU | | LUU | ıull | ialui. | **Head of Department:** Date: / / Elective Course: Plant System Modeling in Land Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Farming system modeling in land management **Department offering the program:** Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: # A- Basic Information Title: Plant System Modeling in Land Management Code: SLM 14745 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information #### 1 – Overall aims of course Plants have developed sophisticated mechanisms to capture and use resources efficiently. Complex internal molecular/biochemical mechanisms mediate the transport, accumulation, transformation of nutrients in the different compartments of the plant. Specialised structures are formed to exploit resources availability in space. While the components required for these basic processes are becoming increasingly well characterised, little is still known of their precise coordination and control in space and time. In the Plant Systems Modelling, a quantitative approach is developed to understand and predict the precise nature of the coupling between these genetic and biophysical processes. Increasingly, agricultural decision support systems are being delivered for use under various cropping and management systems over large geographic areas with diverse environments and soils. These systems are mathematical models of various types which combines the most recent knowledge achievements of agricultural research and experiences. Therefore, this course will include an introduction to mathematical modeling and simulation with an explanation of basic concepts and ideas, which includes definitions of terms such as system, model, simulation, mathematical model, reflections on the objectives of mathematical modeling and simulation, on characteristics of "good" mathematical models, and a classification of mathematical models. A hands-on application of specific methods will be explained, such as regression or neural network, methods or differential equations (DEs). # 2 – Intended learning outcomes of course (ILOs) On completion of this course, the student will be able to: - 1. Describe the different plant growth stages. - 2. Identify the different factors affecting plant growth and development. - 3. Distinguish between the different types of stresses facing plant growth. - 4. Define models, mathematical models and simulation. - 5. Name the different modeling methods and types of mathematical models. - 6. Apply mathematical methods for solving equations and curve fitting to experimental data. - 7. Analyze different mathematical models for their type, structure, parameters and inputoutput data. - 8. Justify the suitability of different mathematical approaches and its application. # 3- Contents | Week | Contents | | | |-----------|---|--|--| | Part I: F | art I: Plant growth and development as basis for modeling | | | | 1 | Introduction to plant growth and development: | | | | | - Plant growth vs. plant development | | | | | Stages of plant growth and the growth curve | | | | | Plant growth factors in relation to crop farming | | | | | - Genetic factors, environmental factors and G x E interaction | | | | 2 | Factors affecting plant growth: I. Climatic factors: | | | | | - Temperature | | | | | - Moisture supply | | | | | - Radiant energy | | | | | - Components of the atmosphere (air quality – air pollutants – CO ₂) | | | | 3 | Factors affecting plant growth: II. Soil factors: | | | | | - Soil aeration | | | | | - Soil reactions | | | | | Availability of soil nutrients (mechanisms of uptake and translocation) | | | | 4 | Biotic and Abiotic stresses: | | | | | - Biotic stresses | | | | | Abiotic stresses (heat – salinity – drought) | | | | | - Stress tolerance vs. Stress avoidance | | | | | - Mechanisms of stress tolerance/avoidance | | | | Part II: | Principles of mathematical modeling | | | | 5 | - Models, mathematical models and simulation | | | | | Principles of mathematical modeling and scientific method | | | | | Some methods of mathematical modeling | | | | | - Dimensional analysis (Dimensions and Units, Dimensional homogeneity, | | | | | Systems of units) | | | | | - Scaling (Abstraction and scale, linearity and geometric scaling, scaling in | | | | | equations, design of experiments, perceptions of presented data as models) | | | | | - Problems | | | | 6 | - Approximating and validating | |----|---| | | - Taylor's formula | | | - Algebraic approximations | | | - Numerical approximations | | | - Significant figures | | | Validating the model (adequacy, errors, accuracy and precision) | | | - Fitting curves to data | | | - Elementary statistics | | | - Problems | | 7 | - Exponential growth and decay | | | - Exponential functions and their differential equations | | | - Radioactive decay | | | - A Nonlinear Model of Population Growth | | | - Optimization (Continuous optimization Modeling, optimization with linear | | | programming) | | | - Choosing the best alternative (Rankings and pairwise comparisons, borda | | | counts and pairwise comparisons, rank reversals) | | | - Pairwise Comparisons and Making Decisions | | | - Problems | | 8 | - Classification of mathematical models | | | - Phenomenological models (Elementary statistics, linear, multiple linear and | | | nonlinear regression, neural networks) | | | - Mechanistic models (ordinary and partial differential equations) | | | - Fitting ODE's to data | | | - Analytical and numerical solutions to PDE (finite difference and finite element | | | methods) | | | - Problems | | - | Applications | | 9 | Crop Growth Modelling: | | | - RI-RUE concept | | | - Crop development and photosynthesis | | | -
Assimilate portioning | | | - Dynamics of shoot | | | - Model parameters and simulation using SFELLA model | | 10 | Photosynthesis and Carbon Assimilation: | | | - Mathematical model of C3 photosynthesis | | | - Canopy photosynthesis, measurements, models | | 11 | Root growth and activity and soil-plant-water relationships: | | | - Branching and distribution models of root growth | | | - Factors affecting root growth | | | - Water potential in soil and plant | | | - Below ground processes | | | - Above ground Processes | | | Combining below and above ground | |----|---| | | - Modelling water uptake | | 12 | Plant growth stress: | | | Modelling transient root zone salinity (Concept, boundary conditions) | | | - Modelling solute transport | | | - Modelling chemical interaction | | | - Modelling plant response | | | - Application SALTMED model | # 4- Teaching and learning methods - 4.1-Case Studies - 4.2-Presentations - 4.3-Tutirial # 5- Student assessment methods # Weighing of assessments | Mid-term written exam | 20% | |--------------------------------------|------| | Final written exam | 40% | | Oral exam and/or final report | 20% | | Coursework and continuous assessment | 20% | | Total | 100% | ## Any formative only assessments #### 6- List of references The following textbooks and research articles provide valuable background materials for this course. We do not expect the students to purchase these books to undertake the course as they are available across the faculty and university libraries. Some materials are already available in the PDF format. Further reading materials will be provided via lecture and lab notes. - 1. Dym C. L. (2004) Principles of Mathematical Modeling. Claremont, California. USA. - 2. Kuttler C. (2010) Basics of Mathematical Modeling. Lecture Notes. - 3. Murthy, V. R. K. (2010) Crop growth modeling and its application in agricultural meteorology. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology pp. 235-261. - 4. Velten, K. (2009) Mathematical Modeling and Simulation: Introduction for Scientists and Engineers. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. - Rössel, D., H. Ortiz-Laurel, N. Kanswohl and M. Schlegel (2008) Mathematical modelling for precisely improving inputs supply for crop production. Agronomy Research 6 (Special issue), 307–314. ## Course coordinator: # **Head of Department:** Date: / / # Specialization Module: Farm System Modeling in Land Management Elective Course: Animal System Modeling in Land Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Farming system modeling in land management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: # A- Basic Information Title: Animal System Modeling in Land Management Code: SLM 14746 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 # **B-** Professional Information ## **Summary** There are different agriculture either plant (crops, vegetables, ...etc.) or animal (ruminants, poultry, fish, ...etc.) productive systems in exhibiting a mosaic pattern both at the national, regional, or International levels. Each mosaic pattern is the result of the geographical location of the centers of origin of animal/plant in the world and their dispersion during history. The way humans choose and combine animal/plant is the result of the interactions among physical (soil and climate), biological (animal, plant, disease, pest, ...etc.) and socio-economic factors (population growth, credit, etc.). For each of the biological production systems, these elements will be highlighted to understand the guiding forces behind the equilibrium among different production systems. The analyses of these elements will create opportunities to formulate models (integrated productive systems) to improve production existing systems if necessary and in what way. The theoretical and innovative proposed animal based models will then discussed and might be implemented on real cases by each student. #### 1 - Overall aims of course Overall Aims of the Course: This course deliver knowledge and provide skills to create ideas helping the students to formulate models of integrated Animal-based productive systems for sustainable land management. The following topics planned to be covered: Introduction to Agricultural productive systems (Livestock: Animal, Poultry, and Fish; Plant: crops, vegetables ...etc); Integrated agricultural systems modiling; targeted animal-based systems pre-modeling components, requirements, criteria, and limitations; designing a complete systems modeling; evaluate the proposed model; Logical Framework Matrix (LFM; Indicators, verifications and risk mitigation); model traceability, coding and certification. # 2 - Intended Learning Outcomes (ILOs): ## a. Knowledge and Understanding: - 1. Remember types of different animal productive systems. - 2. List types of different plant productive systems. - 3. State the differences between agricultural productive systems and systems model. - 4. Categorize the main components required for systems modeling. - 5. Define the concept of animal-based systems modeling. - 6. Explain the requirements to build an organic integrated system (model). - 7. Discuss the meaning of integrated system modeling. - 8. Classify the characteristics of good agriculture integrated productive systems model. - 9. Recognize the Logical Framework Matrix (LFM) components. - 10. Identify the suitable code of traceability for certifying a new model. #### b. Intellectual Skills: - 1. Solve several problems related to pre-model limitations in a targeted area. - 2. Identify specific problems associated with animal-based systems model. - 3. Design a pre-model for integrated agricultural productive systems. - 4. Think creatively to suggest new animal-based systems model for sustainable land use. - 5. Create a suitable Logical Framework Matrix (LFM) for a suggested model. - 6. Innovate a traceability coding for suggested systems model certification. ## c. Professional and Practical Skills - 1. Present a suggested Animal-based systems modeling for a targeted area. - 2. Summarize systems modeling indicators. - 3. Calculate economical impacts of a suggested Animal-based systems modeling. - 4. Analyze the sustainable limitations in a targeted area. - 5. Prioritize the managerial structure criteria related to targeted area. - 6. Verify the risk assessment components of a suggested Animal-based systems modeling. - 7. Suggest risk mitigation with suitable contingency plan(s). # d. General and Transferable Skills: - 1. Use information technology (IT) facilities for self-learning. - 2. Contribute constructively to class and group discussion. - 3. Work in small groups for problem solving. - 4. Write effectively a scientific report in English. #### 3- Contents: | | Lecture title | Tutorial/Practical title | |---------|---|--| | Week(s) | | | | 1 | Introduction to Animal Livestock Productive | Examples of Animal, Poultry, Fish | | | Systems | Productive Systems | | 2 | Introduction to Plant Productive Systems | Examples of Crops, Vegetables, other | | | Introduction to Plant Productive Systems | agricultural Productive Systems | | 3 | Agricultural productive system vs. Agricultural | Examples for sustainable agricultural | | | systems modeling | integrated productive systems | | 4 | Requirements to build a systems modeling | Sustainable limitations in a targeted area | | | (integrated, organic, ecological, economical, | (identify problems to strength diversity) | | 5 | and productive model) | Managerial structure criteria (budget, | |----|---|--| | | | team and resources) | | 6 | | Designing a pre-model | | 7 | Midterm | | | 8 | Examples for integrated systems modeling | Designing a complete animal-based | | 9 | | systems modeling (project) | | 10 | Evaluation criteria for an integrated model | Evaluate proposed animal-based systems | | | | modeling (project) | | 11 | Logical Framework Matrix (LFM) components | LFM indicators and verification | | 12 | Risk assessment | Risk mitigation and contingency plan | | 13 | Traceability coding and certification | Examples on traceability coding | | 14 | Practical and Oral Exam | | | 15 | | | | 16 | Final Exam | | # 4. Teaching and Lecturing Methods: - 1. Effective lectures including simulating tools. - 2. Group discussion and assessment. - 3. Case study. - 4. Course notes and additional readings. # 5- Student assessment methods, schedule and weighting: # a. Assessment tools (methods): - 1. Mid-term exam to assess obtained knowledge and understanding, and intellectual skills. - 2. Practical exam to assess technical and technological skills. - 3. Oral exam to assess all required skills (intellectual, technical/professional, technological and soft/social skills). - 4. Final written exam to assess retained knowledge and understanding, and intellectual skills. - 5. Writing and present a project related to the course to assess general and transferable, knowledge and understanding, technological, professional and technical skills. #### b. Assessment schedule: | Assessment 1: Mid-term exam | Week 7 | |----------------------------------|-------------------| | Assessment 2: Project report | Week 8-13 | | Assessment 3: Practical exam | Week 14 and/or 15 | | Assessment 4: Oral exam | Week 15 | | Assessment 5: Final written exam | Week 16 | # c. Weighting of assessments: | - 0 - 0 | | |------------------------|------| | Mid-Term Examination | 10% | | Final report | 20% | | Practical Exam | 20%
 | Oral Exam | 10% | | Final-Term Examination | 40% | | Total | 100% | #### 6- List of References #### 6.1- Course notes. #### 6.2- Essential books (text books) - Altieri M. A. 1995. Agroecology: The science of sustainable agriculture, second edition. Westview Press, Boulder, Colorado, USA. - Bouma J. and van Beukering P. 2015. Ecosystem Services: From concept to practice. Cambridge University Press (267 p). - Ford A. 1999. Modeling the Environment: An Introduction to System Dynamics Models of Environmental Systems. - Gliessman S. 2004. Chapter 2, Agroecology and Agroecosystems. In D. Rickerl and C. Francis, (ed.). Agroecosystems Analysis. American Society of Agronomy, Madison, WI. - Gooley, G. J. and Gavine, F. M. 2003. Integrated Agri-Aquaculture Systems A Resource Handbook. Rural Industries Research and Development Corporation. ISBN 0 642 58580 6). ISSN 1440-6845. Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON, Australia. - Lampkin N. 1997. Organic Poultry Production. ISBN: 0902124625. Welsh Institute of Rural Studies University of Wales, Aberystwyth SY23 3AL. - Nicholson C. 2004. Some Thoughts on the Use of System Dynamics Modeling for Assessment of the Evolution of Agricultural based Livelihood Systems. - Seré C., H. Steinfeld, and J. Groenewold. 1995. World Livestock Production Systems. FAO Animal Production and Health Paper No. 127. Food and Agriculture Organization of the United Nations. - Stout M. 2013. Aquaponic Gardening. International Standard Book Number: 978-1-61564-235-9. Library of Congress Catalog Card Number: 2012951749. Alpha Books, Penguin Group (USA) Inc. 375 Hudson Street, New York, USA. - Thornley J. H. M. 2000. Plant and Crop Modeling: A Mathematical Approach to Plant and Crop Physiology. - Tidwell J. H. 2012. Aquaculture Production Systems. ISBN: 978-0-8138-0126-1. John Wiley & Sons, Ltd., Publication. 2121 State Avenue, Ames, Iowa 50014-8300, USA. - Vandermeer J. H. 2010. The ecology of agroecosystems. Jones & Bartlett Learning, Sudbury, MA. - Vaneekeren N., A. Maas, H. W. Saatkamp, and M. Verschuur. 2006. Small-scale chicken production. ISBN Agromisa: 90-8573-069-4. ISBN CTA: 978-92-9081-347-7. Agromisa Foundation and CTA, Wageningen, Netherlands. **Head of Department:** Date: / / Specialization Module: Farm System Modeling in Land Management Elective Course: Integrated Pest Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Farming system modeling in land management Department offering the program: Soil and Water Sciences Department offering the course: Pesticides Chemistry Academic year / Level: Master Date of specification approval: # A- Basic Information Title: Integrated Pest Management (IPM) Code: SLM 14747 **Credit Hours / ECTS:** 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 # **B-** Professional Information # **Course Description** Integrated Pest Management (IPM) is designed to introduce students to the theory and practice of integrated pest management systems in major agronomic and horticultural crops; turf grass and pasture systems; and aquatic, non-cropland, and urban settings. The course aims at combining knowledge with analytical, managerial, and communication skills to address real-world problems in a diversity of management systems. #### 1 – Overall Aims of Course - 1. Understand the IPM decision-making process and how it differs from conventional pest - 2. Understand how pest biology and behavior affects the success of management practices. - 3. Develop/increase skills in monitoring, record-keeping, setting treatment thresholds, using non-chemical prevention and treatment methods, using reduced-risk pesticides as a last resort, and developing customer cooperation with the IPM service. - 4. Learn how to incorporate IPM concepts and methods into a structural pest control business ## 2 – Intended Learning Outcomes of Course (ILOs) ## i- Knowledge and Understanding: - Describe damage/injury caused by different pests. - -Know the alternatives of chemical control methods - List benefits of integrated pest management. ## b- Intellectual Skills - Demonstrate economic threshold for different pests. - Evaluate IPM program. - Evaluate approaches to problem-solving related to integrated pest management. - forecast pest outbreaks. - Propose suitable control methods for integration. - Propose suitable methods for measuring pest control efficiency. # c- Professional and Practical Skills - Apply different pest control methods (or techniques) . - Record population size periodically. - Use computer for forecasting pests outbreaks. - Monitoring pest population and fluctuation - Diagnose pests caused damage # d- General and Transferable Skills agriculture). - Write and Communicate scientific reports related to IPM - Contribute constructively to class and group discussion. - Work in small groups for problem solving. - Write effectively a scientific report in English. - Utilize information technology (IT) and electronic resources effectively. ## 4 - Contents | Date | Topic | |--------|--| | Week 1 | History of Integrated Pest Management and appropriate definitions . | | Week 2 | Host plant resistance, crop rotation and cultural practices . | | Week 3 | Principles of weed, insect, disease and nematode management (strategies, | | | thresholds, issues). | | Week 4 | Environmental fate of pesticides, pesticide use, pesticide registration process, | | | pesticide resistance, and utilization of GM traits in pest management . | | Week 5 | Managing pests in organic systems . | | Week 6 | Using peanut to demonstrate IPM principles (host plant resistance, crop | | | rotations, risk indices, weather-based advisories, decision tools, fumigation, | | | plant populations, tillage systems, secondary pest outbreaks, international | Week 7 Examples of large-scale management programs: Vegetable and crops (insects, disease and greenhouse operations). - Week 8 Turf grass and nursery crops (aesthetics, propagation). - Week 9 Livestock and pastures (grazing, feedlots). - Week 10 Urban IPM (insects and rodents). - Week 11 Post-harvest handling of vegetables, commodities, etc. - Week 12 Consultant and Extension roundtable # **4- Teaching and Learning Methods** - Effective Lectures - Practical sessions - Assignments - Case Study #### 5- Student Assessment Methods - mid-term exam to assess obtained knowledge and understanding and skills assess - Oral exam to assess knowledge, understanding, and intellectual skills - Practical exam to assess professional, intellectual, and general skills Final exam to assess retained knowledge, understanding and skills - Class attendance and activities #### **Assessment Schedule** Assessment 1: Assignments reports and presentations during the semester Assessment 2: Midterm exam 7th Week Assessment 3: research paper presentation 12th Week Assessment 4: Oral exam 13th Week Assessment 5: Practical exam 14th Week Assessment 5: Final exam 15th Week # **Weighting of Assessments** | Mid-term Exam | 10% | |------------------------|------| | Final Exam | 40% | | Case study & reporting | 20% | | Oral Examination | 10% | | Practical Exam | 20% | | Total | 100% | ## 6- List of References # 6.1- Course Notes Integrated Pest Management (Hand-out) # 6.2- Essential Books (Text Books) Elliott, N. C., Farrell, J. A., Gutierrez, A. P., van Lenteren, J. C., Walton, M. P., & Wratten, S. (1995). *Integrated pest management*. D. Dent (Ed.). Springer Science & Business Media. Gent, D. H., Barbour, J. D., Dreves, A. J., James, D. G., Parker, R., Walsh, D. B., & O'Neal, S. (2009). Field Guide for Integrated Pest Management in Hops. Oregon State University, University of Idaho, USDA Agricultural Research Service, Washington State University, USA. Hill, D. S. (2008). *Pests of crops in warmer climates and their control*. Springer Science & Business Media. #### 6.3- Recommended Books - Common Sense Pest Control, W. Olkowski, Sheila Daar, Helga Olkowski. 1991 Newtown, CT: The Taunton Press. 715 pp. - NPMA Field Guide to Structural Pests by Eric H. Smith and Richard C. Whitman, Published 1992 - Handbook of Pest Control by Arnold Mallis, Published by Franzak & Foster Co. - Integrated Pest Management for Schools: A How-To Manual (written by BIRC staff) ## 6.4- Periodicals, Web Sites, ... etc - IPM Institute http://www.ipminstitute.org/school biblio buildings.htm - California Department of Pesticide Regulation http://www.cdpr.ca.gov/cfdocs/apps/schoolipm/school ipm law/26 exempt text5.pdf University of California Statewide IPM Project <u>http://axp.ipm.ucdavis.edu/PMG/selectnewpest.home.html</u> University of California at Riverside Entomology Department http://entmuseum.ucr.edu/bugfaq.html University of Florida Entomology Department http://creatures.ifas.ufl.edu/main/search common.htm University of Florida School IPM http://schoolipm.ifas.ufl.edu/ Marin County Department of Agriculture Model School IPM Program http://www.co.marin.ca.us/schoolIPM/ ## &- Facilities Required for Teaching and Learning - 8.1- Class room equipped with movable table and chairs, computers, data show and Internet . - 8.2- Equipped Laboratory for pesticide toxicology and data analysis. - 8.3- Facilities for Field trips and community outreaching . | Course coordinator: | | | |---------------------|-----------|--| | Head of De | partment: | | | Date: / | 1 | | Specialization Module: Farm System Modeling in Land Management **Elective Course: Applied Bioeconomics** **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Farming system modeling in land management Department offering the program: Soil and Water Sciences Department offering the course: Soil and
Water Sciences Academic year / Level: Master Date of specification approval: # A- Basic Information Title: Applied Bioeconomics Code: SLM 14748 Credit Hours / ECTS: 2 / 6 Lecture: 2 Tutorial/Practical: Total: 2 # **B-** Professional Information **Keywords:** Farming Systems, Land Resources, consumer behavior, producer behavior, market types, natural resources, consumer surplus, producer surplus, resource scarcity, opportunity cost. # **Course Description:** The course encompasses elements of agricultural and food economics, as well as natural resources economics and uses of the principles of microeconomics and macroeconomics pertinent to and with application to sustainable land management. The course considers sustainable food systems and food security from a wide range of perspectives. It examines farming as a social practice, as commercial food production, as a challenge to environmental policy, and as an integral part of sustainable and healthy consumption. Specifically, it provides the theoretical background to consumer and producer theories, market types, competition and natural monopolies, and why uncertainty affects economic analysis, especially when dealing with non-renewable natural resources. The course further displays the uses of the demand and supply analysis to determine the optimal levels of production, consumption, pollution, evaluate market structures, and price formulation for food and agricultural products and resources. # 2 – Intended learning outcomes of course (ILOs) - 1. Learn the basic microeconomic concepts needed for analysis and decision- making regarding environmental and agricultural resources. - 2. Study the consumer behavior and demand to know what motivates people to consumer the services of land. - Analyze and make decisions to solving production problems. This is since production leads to resource exhaustion and degradation and yields pollution as a secondary undesired product. - 4. Understand the fundamental principles needed for market supply and demand analysis, market price determination, and forms of market competition. - 5. Understand the fundamental principles needed for sources of risk and risk management analysis, economic policy analysis, and natural resources economics and policy analysis. - 6. Review the recent economic literature on land degradation and improvement. - 7. Address that land degradation has higher economic returns than inaction. - 8. Conceptualize the methodological areas for future research on the sustainability of land management. #### 3- Contents The course is an intermediate level course focusing on aspects of consumption, production, organization, and exchange in the economy. It incorporates elements of agricultural and food economics, as well as natural resource economics, along with the utilization of microeconomics and macroeconomics. The course considers sustainable food systems and food security from a wide range of perspectives. Farming is examined as a social practice, a commercial food production, a contributor and challenger to environmental policy, and an integral part of sustainable and healthy consumption. | Week | Class Topics | | |------------------------|---|--| | | Introduction | | | Week 1 Course overview | | | | | Important concepts in economics (scarcity and opportunity cost). | | | | Micro versus Macroeconomics. | | | | The farm and the food system. | | | | Natural resources and economics. | | | | Consumer behavior and Demand | | | Week 2-3 | | | | Week 4-5 | Producer decision making: single variable input and two variable inputs and enterprise selection. | | | Week 6-7 | Production costs, supply, and price determination | | | Week 8 | Production costs, supply, and price determinantion under uncertainty | | | Week 9 | Competition, monopolies, natural monopolies, and the market | | | Week 10 | Imperfect competition, role of governments, and market regulations pertaining to land resources. | | | Week | Class Topics | |------------|---| | Week 11-12 | Natural Resources
Welfare Analysis (consumer and producer surpluses) | ^{*}Midterm and Final Exams will be held during the extra week(s) of the semester. # 4- Teaching and learning methods Lecture Directed Learning Independent Learning Exam Preparation Exam Taking . # 5- Student assessment methods # Weighing of assessments | Quizzes | 25% | |-------------------------------|------| | In-class participation and HW | 10% | | Midterm Exam | 25% | | Final Exam | 40% | | Total | 100% | # 6- List of references # 6.2- Essential books (text books) Barkley & Barkley. Principles of Agricultural Economics, Routledge. 2013. OECD, 2009. The bioeconomy to 2030: designing a policy agenda. Paris: OECD Publishing. # 6.3- Recommended books Introduction to Agricultural Economics 5/E by John B Penson, Jr., Oral Capps, Jr., C. Parr Rosson III, and Richard T. Woodward. Prentice Hall ISBN-13: 978-0-13-507026-0, ISBN-10: 0-13-507026-0. 2010. The textbook provides a clear explanation of the concepts in agricultural economics and business. The student's understanding of the lectures will be enhanced by reading the assigned chapters before the class. Supplemental readings will be assigned occasionally during the semester. Class notes or handouts, exercises, and other materials will be provided. This is in addition to materials used in E-Learning. Alisher Mirzabaev, Ephraim Nkonya, Joachim von Braun, Economics of Sustainable Land Management, Center for Development Research (ZEF), University of Bonn, Walter Flex Str, | 53113 Bonn, Germany, International Food Policy Research Institutive (IFPRI), 2033 K St, NW | |--| | Washington, DC 20006-1002, USA, ISSN 1864-6638, Bonn, March 2013. | | Course coordinator: | | | |---------------------|---|--| | Head of Department: | | | | Date: / | / | | Specialization Module: Farm System Modeling in Land Management Elective Course: Advanced Agricultural Waste Management **Program on which the course is given:** Sustainable Land Management (SLM) Major or minor element of program: Farming system modeling in land management Department offering the program: Soil and Water Sciences Department offering the course: Soil and Water Sciences Academic year / Level: Master Date of specification approval: # **B- Basic Information** Title: Advanced Agricultural Waste Management Code: SLM 14749 Credit Hours / ECTS: 2 / 6 Lecture: 1 Tutorial/Practical: 2 Total: 2 # **C- Professional Information** #### 1 – Overall aims of course This course covers principles of managing, handling, treating and applying animal and field and other agriculture wastes. Topics include waste characterization, role of soils in waste management, role of plant in waste management, agricultural waste management systems, and preparation of waste management plans, waste utilization and waste management equipment. ## 2 – Intended Learning Outcomes of Course (ILOs) - a. Knowledge and Understanding: - 1. Define the Pollution versus contamination. - 2. Define waste characterization and management terms - Names the factors affecting the pollution process. - 4. Identify effects of animal waste on the water, air and animal resources. - 5. Discuss role of Soils and plant in Waste Management. - 6. List different agricultural wastes and its application - 7. Select agriculture waste management system - 8. Write the different methods of Waste Utilization - 9. Mention suitable waste management equipment depending on the type of the waste. ## b. Intellectual Skills: - 1. Choose suitable methods of analysis of different agriculture waste - 2. Choose suitable agriculture waste in different application - 3. Have analytical thinking - 4. Distinguishes between different Agriculture waste - 5. Conclude the analysis of composts and silage - 6. Distinguishes between different system of waste management - 7. Summarises waste utilization # c. Professional and Practical Skills - 1. Use instruments in analytical laboratories. - 2. Detect the quality of analyzed agricukture waste. - 3. Write full report justifying his judgment. - 4. Apply results of agricultural waste analysis in different application - 5. Apply waste utilization and management system - 6. Have practical knowledge of planning an agricultural waste management system # d. General and Transferable Skills: - 1. Interact efficiently with others. - 2. Work effectively in a team. - 3. Manage time effectively. - 4. Make appropriate decisions depending on analysis results . - 5. Collect the gained experiences in different waste utilization and management systems. - 6. Write effectively a scientific report in English. ## 3- Contents: | Topic | Lecture | Tutorial/Practical | |-------|--|---| | | Registration of Students | Registration of Students | | 1 | Agricultural Wastes and Water, Air, and Animal Resources *Pollution versus contamination *Effects of animal waste on the water resource *Factors affecting the pollution process | Sample Preparation | | 2 | Agricultural Wastes and Water, Air, and Animal Resources *Controlling the pollution process *Effects of animal waste on the air resource *Effects of animal waste on the animal resource | Proximate Analysis of Agriculture Waste * (Moisture– Protein - Carbohydrates – Ash – Mineral Matter) | | 3 | Agricultural Waste Characteristics * Definitions of waste characterization terms * Animal waste characteristics * Field wastes * Other wastes | Proximate Analysis of Agriculture Waste * (Crude Fibre - Cellulose) | |
4 | Role of Soils in Waste Management * Soil phases *Soil-agricultural waste interaction *Soil-agricultural waste mineralization relationship * Soil characteristics | Proximate Analysis of Agriculture Waste * (Hemicellulose - Lignins) | | 5 | Role of Plants in Waste Management * Agricultural waste as a resource for plant growth * The plant—soil system * Plant nutrient uptake | The Analysis of Composts * Determination of cation exchange capacity (CEC) in composts | | | *Balancing plant nutrient needs with waste application | | |----|--|--| | 6 | Midterm Exam | | | 7 | Application of agricultural waste | The Analysis of Composts * Determination of Ca, K, Mg and P in composts | | 8 | Agricultural Waste Management Systems * Definitions of waste management terms * Waste management functions * Management Systems *Typical agricultural waste management systems | The Analysis of Composts * Determination of heavy metals in compost | | 9 | Planning an agricultural waste management system | The Analysis of Silage * Determination of ammonium-N in silage | | 10 | Waste Utilization * Waste consistency * Land application * Salinity * Plant nutrients * Nutrient management | The Analysis of Silage * Determination of moisture in silage * Determination of pH in silage | | 11 | Waste Management Equipment * Waste production equipment * Waste collection equipment * Waste utilization equipment | The Analysis of Silage * Determination of volatile fatty acids (VFAs) in silage * Extraction method for obtaining silage juice for analysis for VFAs | | 12 | <u>Revision</u> | Revision | # 4. Teaching and Lecturing Methods - 4.9. Lectures. - 4.10. Practical sessions. - 4.11. Group discussions. - 4.12. Data analysis. - 4.13. Problem solving. - 4.14. Seminars. - 4.15. Reports - 4.16. self-study # 5- Student assessment methods - 5.1. Mid-term exam - 5.2. Oral exam - 5.3. Practical exam - 5.4. Final written exam - 5.5. Writing on a subject related to the course # **Assessment schedule** Assessment 1: Mid-term exam Week 6 Assessment 2: Practical exam Week 13 Assessment 3: Oral exam Week 13 | Assessment 4: Final written exam | Week 14 | |----------------------------------|-------------| | Assessment 5: report | Week 11, 12 | # Weighting of assessments | Mid-Term Examination | 5% | |------------------------|-----| | Oral exam | 5% | | Practical exam | 20% | | Final report | 10% | | Final-Term Examination | 60% | ## 6- List of References ## 6.1- Course notes Agricultural Waste Management (Hand-out) # 6.2- Essential books (text books) - o Williams, P.T.; Waste treatment and disposal, 2005, John Wiley and Sons, England - o Vaughn J., Waste management handbook, 2009, AbcClio, Oxford, England - Davis, M.L.; Cornwell, D.A. (1998): Introduction to environmental engineering, McGraw-Hill, Inc., New York, USA - Agricultural Waste Management Field Handbook, United States Department of Agriculture Course coordinator: Hend El-akkad / M. Momtaz/ Mohamed Ali/ Abdelhady Ali / Adham Elsaghir Head of Department: Date: /